(本小題滿分10分)

中內(nèi)角的對邊分別為,且 

(1)求的值;

(2)如果b=4,且a=c,求的面積.

 

【答案】

(1)(2)

【解析】

試題分析:解:(1)由已知,

由正弦定理得

  

考點:本試題考查了解三角形的運用。

點評:解決該試題的管家式對于已知中的邊角關(guān)系的互化,結(jié)合正弦定理和余弦定理阿麗表示得到第一問的角和第二問中邊長的值,主要是考查了同學們對于兩個定理的熟練程度的運用,屬于基礎題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
(Ⅰ)求an;
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分10分)數(shù)學的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-2:矩陣與變換)(本小題滿分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

同步練習冊答案