在實(shí)數(shù)集中定義一種運(yùn)算“”,對任意,為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對任意,;
(2)對任意,.
關(guān)于函數(shù)的性質(zhì),有如下說法:①函數(shù)的最小值為;②函數(shù)為偶函數(shù);③函數(shù)的單調(diào)遞增區(qū)間為.
其中所有正確說法的個(gè)數(shù)為( )
A. | B. | C. | D. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=ex+a,若f(x)在R上是單調(diào)函數(shù),則實(shí)數(shù)a的最小值是( )
A.1 | B.-1 |
C.-2 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知符號函數(shù)sgn(x)=則函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)個(gè)數(shù)為( )
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
定義在R上的函數(shù)y=f(x+1)的圖象如圖所示,它在定義域上是減函數(shù),給出如下命題:①f(0)=1;②f(-1)=1;③若x>0,則f(x)<0;④若x<0,則f(x)>0,其中正確的是( )
A.②③ | B.①④ | C.②④ | D.①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
函數(shù)f(x)=ax2+(a-3)x+1在區(qū)間[-1,+∞)上是遞減的,則實(shí)數(shù)a的取值范圍是( )
A.[-3,0) | B.(-∞,-3] |
C.[-2,0] | D.[-3,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
對于函數(shù)f(x)=acosx+bx2+c,其中a,b,c∈R,適當(dāng)?shù)剡x取a,b,c的一組值計(jì)算f(1)和f(-1),所得出的正確結(jié)果只可能是( )
A.4和6 | B.3和-3 |
C.2和4 | D.1和1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
函數(shù)f(x)=(x≠-)滿足f(f(x))=x,則常數(shù)c等于( )
A.3 | B.-3 |
C.3或-3 | D.5或-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知函數(shù)y=f(x+1)的定義域是[-2,3],則y=f(2x-1)的定義域是( )
A.[0,] | B.[-1,4] |
C.[-5,5] | D.[-3,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)函數(shù)f(x)=x3-4x+a(0<a<2)有三個(gè)零點(diǎn)x1,x2,x3,且x1<x2<x3,則下列結(jié)論中正確的是( )
A.x1>-1 | B.x2<0 | C.x3>2 | D.0<x2<1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com