(本小題滿分12分)

 

 
如圖所示,在正三棱柱中,,,的中點,在線段上且

(I)證明:;
(II)求二面角的大。
解:
(I)證明:
已知是正三棱柱,取AC中點O、中點F,連OF、OB,則OB、OC、OF兩兩垂直,以OB、OCOFx、yz軸建立空間直角坐標系.如圖所示.
,
     
 
   
 
于是,有、
又因ABAE相交,故ABE.…………… 6分
(II)解:
由(1)知,是面ABE的一個法向量,
是面ADE的一個法向量,則
  ①
          ②
,聯(lián)立式①、②解得,則
因為二面角是銳二面角,記其大小為.則

所以,二面角的大小(亦可用傳統(tǒng)方法解(略)).
……………………………… 12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)
如圖所示的幾何體中,已知平面平面,,且,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,,,且DB平分,E為PC的中點,, PD=3,(1)證明   (2)證明
(3)求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5,在三棱柱中,側(cè)棱底面,的中點,
,.
(1)求證:平面
(2) 求四棱錐的體積.  圖5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5,在三棱柱中,側(cè)棱底面,的中點,
.
(1) 求證:平面;
(2)若四棱錐的體積為,求二面角的正切值.
圖5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知正方形ABCD的邊長為1,.將正方形ABCD沿對角線折起,使,得到三棱錐ABCD,如圖所示.
(1)求證:;
(2)求二面角的余弦值.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知中,,平面,
分別為上的動點.
(1)若,求證:平面平面
(2)若,,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
在棱長為2的正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為A1D1和CC1的中點.

(Ⅰ)求證:EF//平面ACD1;
(Ⅱ)求異面直線EF與AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一點P,使得二面角P—AC—B的大小為30°?若存在,求出BP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如右圖所示,在直三棱柱的底面中,
,,,點的中點,
的長是           。

查看答案和解析>>

同步練習冊答案