17.已知函數(shù)f(x)=x2+1,g(x)=x+a,?x1∈[-1,2],?x2∈[1,2],f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍為(-∞,0].

分析 由?x1∈[-1,2],都?x2∈[1,2],使得f(x1)≥g(x2),可得f(x)=x2+1在x1∈[-1,2]的最小值不小于g(x)=ax+2在x2∈[1,2]的最小值,構(gòu)造關(guān)于a的不等式組,可得結(jié)論.

解答 解:當(dāng)x1∈[-1,2]時(shí),由f(x)=x2+1得,對(duì)稱軸是x=0,
f(0)=1是函數(shù)的最小值,
當(dāng)x2∈[1,2]時(shí),g(x)=x+a為增函數(shù),
∴g(1)=a+1是函數(shù)的最小值,
又∵?x1∈[-1,2],都?x2∈[1,2],使得f(x1)≥g(x2),
可得f(x)=x2+1在x1∈[-1,2]的最小值不小于g(x)=ax+2在x2∈[1,2]的最小值,
即1≥a+1,
解得:a∈(-∞,0],
故實(shí)數(shù)a的取值范圍是(-∞,0],
故答案為:(-∞,0]

點(diǎn)評(píng) 本題考查的知識(shí)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在等差數(shù)列{an}中,a4a7=-8,a3=4,且a8為偶數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=($\sqrt{2}$)${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)=$\sqrt{x-1}+\frac{1}{x+2}$的定義域?yàn)閇1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知α是第三象限角,且滿足$\sqrt{6}$sinα+cosα=$\sqrt{5}$,則tanα=( 。
A.$\sqrt{10}$-$\sqrt{6}$B.$\sqrt{6}$-$\sqrt{5}$C.2$\sqrt{6}$-$\sqrt{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(3x)=4xlog23+233,則f(2)+f(4)+f(8)+f(16)=972.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)p:f(x)=2x2+mx+1在(0,+∞)內(nèi)單調(diào)遞增,q:m≥-5,則¬q是¬p的充分不必要條件,命題“?x∈(1,2)時(shí),滿足不等式x2+mx+4≥0”是假命題,則m的取值范圍m≤-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合M={y|y=3x+1},N={y|y=log3x+1},則有( 。
A.M=NB.M⊆NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax+1(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算:(log43+log83)$\frac{lg2}{lg3}$+log535-2log5$\frac{7}{3}$+log57-log51.8.

查看答案和解析>>

同步練習(xí)冊(cè)答案