已知y=loga(2-ax)在區(qū)間[0,1]上是x的減函數(shù),求a的取值范圍.

解析:先求函數(shù)定義域:由2-ax>0,得ax<2

a是對數(shù)的底數(shù),

a>0且a≠1,∴x

由遞減區(qū)間[0,1]應在定義域內可得>1,∴a<2

又2-axx∈[0,1]是減函數(shù)

y=loga(2-ax)在區(qū)間[0,1]也是減函數(shù),由復合函數(shù)單調性可知:a>1

∴1<a<2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知y=loga(2-ax)在[0,1]上是增函數(shù),則不等式loga|x+1|>loga|x-3|的解集為(    )

A.{x|x<-1}                          B.{x|x<1}

C.{x|x<1且x≠-1}                 D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=loga(2-ax)在[0,1]上是x的減函數(shù),則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=loga(2-ax)在[0,1]上是關于x的減函數(shù),則a的取值范圍是(    )

A.(0,1)                B.(1,2)                  C.(0,2)             D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教B版高中數(shù)學必修一3.2對數(shù)函數(shù)練習卷(二)(解析版) 題型:解答題

已知y=loga(2-ax)在區(qū)間{0,1}上是x的減函數(shù),求a的取值范圍.

 

查看答案和解析>>

同步練習冊答案