定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱f(x)是一個(gè)“λ-函數(shù)”. 有下列關(guān)于“λ-函數(shù)”的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一一個(gè)“λ-函數(shù)”;
②“
1
2
-函數(shù)”至少有一個(gè)零點(diǎn);
③f(x)=x2是一個(gè)“λ-函數(shù)”;
④f(x)=ex是一個(gè)“λ-函數(shù)”.
其中正確結(jié)論是
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用新定義“λ的相關(guān)函數(shù)”,對(duì)①②③④逐個(gè)判斷即可得到答案.
解答: 解:①、設(shè)f(x)=C是一個(gè)“λ-同伴函數(shù)”,則(1+λ)C=0,當(dāng)λ=-1時(shí),可以取遍實(shí)數(shù)集,因此f(x)=0不是唯一一個(gè)常值“λ-同伴函數(shù)”,故①錯(cuò)誤
②、令x=0,得f(
1
2
)+
1
2
f(0)=0.所以f(
1
2
)=-
1
2
f(0),
若f(0)=0,顯然f(x)=0有實(shí)數(shù)根;若f(0)≠0,f(
1
2
)•f(0)=-
1
2
(f(0))2<0,
又因?yàn)閒(x)的函數(shù)圖象是連續(xù)不斷,所以f(x)在(0,
1
2
)上必有實(shí)數(shù)根,
因此任意的“-
1
2
同伴函數(shù)”必有根,即任意“-
1
2
同伴函數(shù)”至少有一個(gè)零點(diǎn).故④正確.
③、假設(shè)f(x)=x2是一個(gè)“λ-同伴函數(shù)”,則(x+λ)2+λx2=0,
即(1+λ)x2+2λx+λ2=0對(duì)任意實(shí)數(shù)x成立,所以λ+1=2λ=λ2=0,而此式無解,所以f(x)=x2不是一個(gè)“λ-同伴函數(shù)”.故③錯(cuò)誤
④、假設(shè)f(x)=ex是一個(gè)“λ-同伴函數(shù)”,則ex+λ+λex=0對(duì)任意實(shí)數(shù)x成立,則有eλ+λ=0,而此式有解,所以f(x)=ex是“λ-伴隨函數(shù)”,故④正確.
故答案為:②④.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的概念及構(gòu)成要素,函數(shù)的零點(diǎn),正確理解f(x)是λ-同伴函數(shù)的定義,是解答本題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)定義域?yàn)椋?2,2),g(x)=f(x+1)+f(3-2x),求g(x)的定義域;
(2)若f(-2x)+2f(2x)=3x-2,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log 
1
3
1
3
,b=log 
1
2
1
3
,c=(
1
2
0.3 則(  )
A、c>b>a
B、b>a>c
C、b>c>a
D、a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,由x=0,x=e,y=0,y=e,y=lnx,y=ex六條曲線共同圍成的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)和g(x)分別由下表給出,那么g[f(2)]=
 

x123x123
f(x)231g(x)321

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|,在①y=
x2
,②y=(
x
)2
,③y=
x2
x
,④y=
x
-x
x>0;
x<0.
中與f(x)為同一函數(shù)的函數(shù)的為
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=4,b=4,∠A=30°,則∠B等于
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:C
 
0
2
+C
 
1
2
+C
 
2
2
=4
(2)計(jì)算:C
 
0
3
+C
 
1
3
+C
 
2
3
+C
 
3
3
=8
(3)猜想:C
 
0
n
+C
 
1
n
+C
 
2
n
+C
 
3
n
+…+C
 
n
n
的值,并證明你的結(jié)論.
(4)你能否利用第(3)題的結(jié)論來求一個(gè)集合的子集的個(gè)數(shù)?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程sinx=
x
10
的根的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案