6.已知函數(shù)f(x)的定義在(-3,3)上的奇函數(shù),當(dāng)0<x<3時(shí),f(x)的圖象如圖所示,則不等式f(x)•x≥0的解集是(-3,-1]∪[1,3).

分析 根據(jù)函數(shù)奇偶性的對(duì)稱性,作出函數(shù)f(x)的草圖,將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.

解答 解:∵函數(shù)是奇函數(shù),
∴函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,
作出函數(shù)f(x)的草圖如圖:
不等式f(x)•x≥0等價(jià)為,
當(dāng)x>0時(shí),f(x)≥0,即1≤x<3,
當(dāng)x<0時(shí),f(x)≤0,則-3<x≤-1,
綜上1≤x<3或-3<x≤-1,
即不等式的解集為(-3,-1]∪[1,3),
故答案為:(-3,-1]∪[1,3)

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性的性質(zhì)作出函數(shù)的圖象是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.化簡(jiǎn)求值:
(1)計(jì)算${6.25^{\frac{1}{2}}}-lg\frac{1}{100}+ln\sqrt{e}+{2^{1+{{log}_2}3}}$
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=2,求$\frac{{x+{x^{-1}}-1}}{{{x^2}+{x^{-2}}+3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知角α、β頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸.甲:“角α、β的終邊關(guān)于y軸對(duì)稱”;乙:“sin(α+β)=0”.則條件甲是條件乙的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下面說(shuō)法中,錯(cuò)誤的是( 。
A.“x,y中至少有一個(gè)小于零”是“x+y<0”的充要條件
B.“a2+b2=0”是“a=0且b=0”的充要條件
C.“ab≠0”是“a≠0或b≠0”的充要條件
D.若集合A是全集U的子集,則命題“x∉∁UA”與“x∈A”是等價(jià)命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)a>1,b>1,若a+b=4,則(a-1)(b-1)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.命題p:關(guān)于x的一元二次方程x2+2tx+(2-t)=0有兩個(gè)不相等的實(shí)數(shù)根,命題q:復(fù)平面中復(fù)數(shù)z=(t-2)+(t2-2t-3)i對(duì)應(yīng)的點(diǎn)在x軸的下方 若p∧q為假,q為真,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=sinxcosx是( 。
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為$\frac{π}{2}$的偶函數(shù)D.周期為$\frac{π}{2}$的奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若正方形ABCD的一條邊在直線y=2x-17上,另外兩個(gè)頂點(diǎn)在拋物線y=x2上.則該正方形面積的最小值為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知命題p,q,“命題p∨q真”是“命題p∧q真”的( 。l件.
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案