關(guān)于x的方程2x2+(m-3)x+2m-1=0有兩實根x1,x2,且滿足x1<1<x2,則m的取值范圍為
 
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)f(x)=2x2+(m-3)x+2m-1,則由題意可得:f(0)<0,解不等式求得實數(shù)m的取值范圍.
解答: 解:令f(x)=x2+(m-3)x+2m-1,
依題意,f(1)=2+m-3+2m-1<0,
∴m<1.
故答案為:(-∞,1).
點評:此題主要考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題,是一種經(jīng)常使用的解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓與直線x+y=1相切,圓心在直線y=-2x上,且經(jīng)過點A(2,-1),求該圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+2)=-f(x),且x∈[0,2]時,f(x)=cosπx,則f(
9
2
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量M={
a
|
a
=(1,2)+m(4,4)m∈R},N={
a
|
a
=(-2,2)+n(4,5)n∈R },則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點在x軸上,過橢圓C的右焦點F(C,0)作兩直線AC和BD,它們分別交橢圓于A、B、C、D.且
AC
BD
=0
,沿AC直線的方向向量為(cosθ,sinθ).
(1)用a,b,c,θ表示四邊形ABCD的面積;
(2)若已知四邊形ABCD面積最小值為8,最大值為
25
2
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象如圖所示,下列數(shù)值排序正確的是(  )
A、0<f′(3)<f(3)-f(2)<f′(2)
B、0<f′(2)<f′(3)<f(3)-f(2)
C、0<f′(3)<f′(2)<f(3)-f(2)
D、0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
x2+4
x2+3
>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,A1B1⊥B1C1,AB=BC=BB1=2,M是BC1的中點.
(Ⅰ)證明:BC1⊥平面A1B1M;
(Ⅱ)求三棱錐M-A1B1B的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求函數(shù)f(x)=2x3+3x-3在(0,1)上的一個近似零點.(精確度0.1)

查看答案和解析>>

同步練習(xí)冊答案