給出下列六種圖象變換方法:
①圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的
1
2
;
②圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來的2倍;
③圖象向右平移
π
3
個(gè)單位;
④圖象向左平移
π
3
個(gè)單位;
⑤圖象向右平移
3
個(gè)單位;
⑥圖象向左平移
3
個(gè)單位.
請(qǐng)用上述變換中的兩種變換,將函數(shù)y=sinx的圖象變換到函數(shù)y=sin(
x
2
+
π
3
)的圖象,那么這兩種變換正確的標(biāo)號(hào)是
 
(要求按變換先后順序填上一種你認(rèn)為正確的標(biāo)號(hào)即可)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將函數(shù)y=sinx的圖象向左平移
π
3
個(gè)單位,可得y=sin(x+
π
3
)的圖象;
再把所得圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來的2倍,可得函數(shù)y=sin(
x
2
+
π
3
)的圖象,
故④②變換滿足條件.
也可將函數(shù)y=sinx的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來的2倍,可得y=sin
1
2
x的圖象;
再把所得圖象向左平移
3
個(gè)單位,可得 y=sin
1
2
(x+
3
)=y=sin(
x
2
+
π
3
)的圖象,
故②⑥也滿足條件.
故答案為:②⑥(或④②).
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn;
(3)求滿足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
2013
2014
的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|x-1|+|x-2|<m,(m∈M)的解集非空.
(1)求集合M;
(2)若a,b∈M,求證:ab+1>a+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=an+2n+1,且n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
2n+1
anan+1
,數(shù)列{bn}的前n項(xiàng)和為Tn.如果對(duì)于任意的n∈N*,都有Tn>m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,點(diǎn)M是PD的中點(diǎn).
(Ⅰ)求證:平面ABM⊥平面PCD;
(Ⅱ)求直線PC與平面ABM所成角的余弦值;
(Ⅲ)求點(diǎn)C到平面ABM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求出直線
x=2+t
y=-1-t
(t為參數(shù))與曲線
x=3cosα
y=3sinα
(α為參數(shù))的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-14x+40=0的根.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{an+2n}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足(
1
4
3+2lgx>4-5的x的取值集合?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定積分
2
0
4-x2
dx等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案