10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.$f(x)=2sin({x-\frac{π}{6}})$B.$f(x)=2sin({2x-\frac{π}{3}})$C.$f(x)=2sin({x+\frac{π}{12}})$D.$f(x)=2sin({2x-\frac{π}{6}})$

分析 由題意求出A,T,利用周期公式求出ω,利用當(dāng)x=$\frac{5π}{12}$時(shí)取得最大值2,求出φ,即可得到函數(shù)的解析式.

解答 解:由題意可知A=2,T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,ω=2,
因?yàn)椋寒?dāng)x=$\frac{5π}{12}$時(shí)取得最大值2,
所以:2=2sin(2×$\frac{5π}{12}$+φ),
所以:2×$\frac{5π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ-$\frac{π}{3}$,k∈Z,
因?yàn)椋簗φ|<$\frac{π}{2}$,
所以:可得φ=-$\frac{π}{3}$,可得函數(shù)f(x)的解析式:f(x)=2sin(2x-$\frac{π}{3}$).
故選:B.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數(shù)的周期的求法,考查計(jì)算能力,?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知O為坐標(biāo)原點(diǎn),方程x2+y2+x-6y+c=0
(1)若此方程表示圓,求c的取值范圍;
(2)若(1)中的圓與直線l:x+2y-3=0交于P、Q兩點(diǎn).若以PQ為直徑的圓過(guò)原點(diǎn)O求c值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足${b_1}=1,{b_2}=\frac{1}{2}$,若n∈N*時(shí),anbn+1-bn+1=nbn
(Ⅰ)求{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)${C_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求{Cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線$E:{x^2}-\frac{y^2}{3}=1$的左焦點(diǎn)為F,直線x=2與雙曲線E相交于A,B兩點(diǎn),則△ABF的面積為( 。
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.
(Ⅰ)求證:平面PBD⊥平面BFDE;
(Ⅱ)求四棱錐P-BFDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.${({x^3}+\frac{1}{{\sqrt{x}}})^n}$的展開(kāi)式的所有二項(xiàng)式系數(shù)之和為128,則n為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若$a={2^{\frac{π}{8}}}$,${(\frac{1}{2})^b}={log_{\frac{1}{π}}}b$,$c={log_2}sin\frac{π}{3}$,則(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,c=\sqrt{{a^2}-{b^2}},e=\frac{c}{a})$,其左、右焦點(diǎn)分別為F1,F(xiàn)2,關(guān)于橢圓有以下四種說(shuō)法:
(1)設(shè)A為橢圓上任一點(diǎn),其到直線${l_1}:x=-\frac{a^2}{c},{l_2}:x=\frac{a^2}{c}$的距離分別為d2,d1,則$\frac{{|A{F_1}|}}{d_1}=\frac{{|A{F_2}|}}{d_2}$;
(2)設(shè)A為橢圓上任一點(diǎn),AF1,AF2分別與橢圓交于B,C兩點(diǎn),則$\frac{{|A{F_1}|}}{{|{F_1}B|}}+\frac{{|A{F_2}|}}{{|{F_2}C|}}≥\frac{{2(1+{e^2})}}{{1-{e^2}}}$(當(dāng)且僅當(dāng)點(diǎn)A在橢圓的頂點(diǎn)取等);
(3)設(shè)A為橢圓上且不在坐標(biāo)軸上的任一點(diǎn),過(guò)A的橢圓切線為l,M為線段F1F2上一點(diǎn),且$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{{|{F_1}M|}}{{|M{F_2}|}}$,則直線AM⊥l;
(4)面積為2ab的橢圓內(nèi)接四邊形僅有1個(gè).
其中正確的有(  )個(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=|x|(2-x)
(1)作出函數(shù)f(x)的大致圖象,并指出其單調(diào)區(qū)間;
(2)若函數(shù)f(x)=c恰有三個(gè)不同的解,試確定實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案