數(shù)列{an}的前N項(xiàng)和為Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和T.
【答案】
分析:(I)利用遞推公式a
n+1=2S
n把已知轉(zhuǎn)化為a
n+1與a
n之間的關(guān)系,從而確定數(shù)列a
n的通項(xiàng);
(II)由(I)可知數(shù)列a
n從第二項(xiàng)開(kāi)始的等比數(shù)列,設(shè)b
n=n則數(shù)列b
n為等差數(shù)列,所以對(duì)數(shù)列n•a
n的求和應(yīng)用乘“公比”錯(cuò)位相減.
解答:解:(I)∵a
n+1=2S
n,
∴S
n+1-S
n=2S
n,
∴
=3.
又∵S
1=a
1=1,
∴數(shù)列{S
n}是首項(xiàng)為1、公比為3的等比數(shù)列,S
n=3
n-1(n∈N*).
∴當(dāng)n≥2時(shí),a
n-2S
n-1=2•3
n-2(n≥2),
∴a
n=
(II)Tn=a1+2a2+3a3+…+nan,
當(dāng)n=1時(shí),T1=1;
當(dāng)n≥2時(shí),Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•
=-1+(1-2n)•3n-1
∴Tn=
+(n-
)3n-1(n≥2).
又∵Tn=a1=1也滿足上式,∴Tn=
+(n-
)3
n-1(n∈N*)
點(diǎn)評(píng):本小題考查數(shù)列的基本知識(shí),考查等比數(shù)列的概念、通項(xiàng)公式及數(shù)列的求和,考查分類討論及化歸的數(shù)學(xué)思想方法,以及推理和運(yùn)算能力.