自點 的切線,則切線長為(   )
A.B.3C.D.5
B

試題分析:因為點A(-1,4),設(shè)切點為點B,連接圓心O(2,3)和點B得到OB⊥AB,圓的半徑為1,斜邊|AO|=,在直角三角形OAB中,根據(jù)勾股定理得:切線長|AB|=,故選B。
點評:簡單題,解答直線與圓的位置關(guān)系問題,要利用數(shù)形結(jié)合思想,充分借助于直角三角形解題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是圓的直徑,、在圓上,、的延長線交直線于點,.求證:

(Ⅰ)直線是圓的切線;
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的圓心坐標(biāo)是(  )
A.(2,3) B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓與y軸相切,圓心在直線x-3y=0,且這個圓經(jīng)過點A(6,1),求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線截圓x2+y2=4得的劣弧所對的圓心角是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點的圓C與直線相切于點.
(1)求圓C的方程;
(2)已知點的坐標(biāo)為,設(shè)分別是直線和圓上的動點,求的最小值.
(3)在圓C上是否存在兩點關(guān)于直線對稱,且以為直徑的圓經(jīng)過原點?若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若圓經(jīng)過坐標(biāo)原點和點,且與直線相切, 從圓外一點向該圓引切線,為切點,
(Ⅰ)求圓的方程;
(Ⅱ)已知點,且, 試判斷點是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線軸的交點為,點是直線上兩動點,且以為直徑的圓過點,圓是否過定點?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則以為直徑的圓的方程是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓心為,半徑為5的圓的標(biāo)準(zhǔn)方程為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案