【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
【答案】
(1)解:因?yàn)榘肭虻闹睆绞? cm,所以半徑R=3 cm,
所以?xún)蓚(gè)半球的體積之和為V球= πR3= π·27=36π(cm3).
又圓柱筒的體積為V圓柱=πR2·h=π×9×2=18π(cm3).
所以這種“浮球”的體積是V=V球+V圓柱=36π+18π=54π≈169.6(cm3)
(2)解:上下兩個(gè)半球的表面積是S球表=4πR2=4×π×9=36π(cm2),
又“浮球”的圓柱筒的側(cè)面積為S圓柱側(cè)=2πRh=2×π×3×2=12π(cm2),
所以1個(gè)“浮球”的表面積為S= = π(m2).
因此2 500個(gè)這樣的“浮球”的表面積為2 500S=2 500× π=12π(m2).
因?yàn)槊科椒矫仔枰磕z100克,所以共需要膠的質(zhì)量為100×12π=1200π(克)
【解析】(1)浮球由兩個(gè)半球和一個(gè)圓柱筒組成的,由球的體積公式及圓柱的體積公式求得其體積;
(2)“浮球”表面涂一層膠即就是要求其表面積,由表面活性劑積決定涂膠克數(shù).
【考點(diǎn)精析】本題主要考查了旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))的相關(guān)知識(shí)點(diǎn),需要掌握常見(jiàn)的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且n+1=1+Sn對(duì)一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時(shí),數(shù)列{an}是等比數(shù)列,并求出它的通項(xiàng)公式;
(2)在(1)的條件下,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和Tn取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AD=DC= ,AB=PA=2 ,且E為線(xiàn)段PB上的一動(dòng)點(diǎn).
(1)若E為線(xiàn)段PB的中點(diǎn),求證:CE∥平面PAD;
(2)當(dāng)直線(xiàn)CE與平面PAC所成角小于 ,求PE長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn) 的方程為 .
(1)若 在兩坐標(biāo)軸上的截距相等,求 的方程;
(2)若 不經(jīng)過(guò)第二象限,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 ,直線(xiàn) .
(1)若直線(xiàn) 與圓 交于不同的兩點(diǎn) ,當(dāng) 時(shí),求 的值;
(2)若 是直線(xiàn) 上的動(dòng)點(diǎn),過(guò) 作圓 的兩條切線(xiàn) ,切點(diǎn)為 ,探究:直線(xiàn) 是否過(guò)定點(diǎn)?若過(guò)定點(diǎn)則求出該定點(diǎn),若不存在則說(shuō)明理由;
(3)若 為圓 的兩條相互垂直的弦,垂足為 ,求四邊形 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)證明 有且只有一個(gè)零點(diǎn);
(2)求這個(gè)零點(diǎn)所在的一個(gè)區(qū)間,使這個(gè)區(qū)間的長(zhǎng)度不大于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的函數(shù)y=(m+6)x2+2(m﹣1)x+m+1恒有零點(diǎn).
(1)求m的范圍;
(2)若函數(shù)有兩個(gè)不同零點(diǎn),且其倒數(shù)之和為﹣4,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形 中, , , , 為線(xiàn)段 的中點(diǎn),將 沿 折起,使平面 平面 ,得到幾何體 .
(1)若 分別為線(xiàn)段 的中點(diǎn),求證: 平面 ;
(2)求證: 平面 ;
(3)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0),B(3,0),C(3,4),則△ABC的外接圓方程是( )
A.(x-2)2+(y-2)2=20
B.(x-2)2+(y-2)2=10
C.(x-2)2+(y-2)2=5
D.(x-2)2+(y-2)2=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com