數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,總有an、Sn、(an2成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)bn=an(
1
2
)n
,數(shù)列{bn}的前n項(xiàng)和是Tn,求證:
1
2
Tn<2
分析:(I)由等差數(shù)列等差中項(xiàng)性質(zhì)可知2Sn=an+an2把a(bǔ)n=Sn-Sn-1代入得到an和an-1的關(guān)系式,整理得an-an-1=1進(jìn)而可以推斷數(shù)列{an}是公差為1的等差數(shù)列,再根據(jù)2S1=a1+a12求得a1,最后根據(jù)等差數(shù)列的通項(xiàng)公式可得數(shù)列{an}的通項(xiàng)公式.
(II)把(I)數(shù)列{an}的通項(xiàng)公式代入bn=an(
1
2
)n
可得數(shù)列{bn}的通項(xiàng)公式.{bn}的通項(xiàng)公式是由等差數(shù)列和等比數(shù)列構(gòu)成,進(jìn)而可用錯(cuò)位相減法求得{bn}的前n項(xiàng)和Tn=2-
2+n
2n
,進(jìn)而推斷Tn<2,又根據(jù)Tn+1-Tn=
n+1
2n+1
>0
推斷{Tn}是遞增數(shù)列可知T1是數(shù)列{Tn}最小項(xiàng),綜合可得Tn范圍,原式得證.
解答:解:(I)由已知2Sn=an+an22Sn-1=an-1+an-1 2,得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1),
∵an,an-1均為正數(shù),∴an-an-1=1(n≥2)∴數(shù)列{an}是公差為1的等差數(shù)列
又n=1時(shí),2S1=a1+a12,解得a1=1∴an=n.(n∈N*
(II)∵bn=an(
1
2
)n
,由(I)知,bn=n(
1
2
)n
Tn=
1
2
+2(
1
2
)2+3(
1
2
)3+4(
1
2
)4++n(
1
2
)n

1
2
Tn=(
1
2
)
2
+2(
1
2
)
3
+3(
1
2
)
4
+(n-1)(
1
2
)
n
+n(
1
2
)
n+1

1
2
Tn=
1
2
+(
1
2
)2+(
1
2
)3+(
1
2
)4++(
1
2
)n-n(
1
2
)n+1

Tn=1+
1
2
+(
1
2
)2+(
1
2
)3++(
1
2
)n-1-n(
1
2
)n
=
1-(
1
2
)
n
1-
1
2
-
n
2n
=2-
2+n
2n
(n∈N*
Tn+1-Tn=2-
3+n
2n+1
-(2-
2+n
2n
)=
2+n
2n
-
3+n
2n+1
=
n+1
2n+1
>0

∴{Tn}是遞增數(shù)列,∴TnT1=2-
1+2
2
=
1
2

又∵
2+n
2n
>0
,∴Tn=2-
2+n
2n
<2
,∴
1
2
Tn<2
得證.
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì)和用錯(cuò)位相減法數(shù)列求和的問(wèn)題.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,總有2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cnn+1,(n∈N*),求數(shù)列{cn}中的最大項(xiàng);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn(n∈N*),已知點(diǎn)(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.
(1)證明{an}是等差數(shù)列,并求an
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk
;
(3)對(duì)于(2)中的命題,對(duì)一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請(qǐng)證明你的結(jié)論,如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項(xiàng)均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項(xiàng)均為正數(shù),a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)當(dāng)k=1,f(p,k)=p+k,p=5時(shí),求a2,a3;
(2)若數(shù)列{an}成等比數(shù)列,請(qǐng)寫出f(p,k)滿足的一個(gè)條件,并寫出相應(yīng)的通項(xiàng)公式(不必證明);
(3)當(dāng)k=1,f(p,k)=p+k時(shí),設(shè)Tn=a1+2a2+3a3+…+2an+an+1,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案