離心率為0.6,長、短軸長之和為36的橢圓的標準方程為________.

答案:
解析:

=1或=1


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其長軸長與短軸長的和等于6.
(1)求橢圓E的方程;
(2)如圖,設橢圓E的上、下頂點分別為A1、A2,P是橢圓上異于A1、A2的任意一點,直線PA1、PA2分別交x軸于點N、M,若直線OT與過點M、N的圓G相切,切點為T.證明:線段OT的長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點O為圓心,以橢圓的短半軸長為半徑的圓與直線x-y+
6
=0相切;若直線l:y=kx+m與橢圓C相交于A,B兩點.直線OA和OB的斜率分別為kOA和kOB,且kOA•kOB=-
b2
a2

(1)求橢圓C的方程;
(2)求證:△OAB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:高二數(shù)學 教學與測試 題型:044

根據(jù)下列條件,求中心在原點、對稱軸在坐標軸上的橢圓方程.

(1)離心率為0.6,一條準線的方程為x=;

(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近端點的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:008

判斷正誤:

橢圓的對稱軸為x=1和y=3, 短軸的長為8, 離心率是0.6, 則此橢圓的方程為+=1或+=1.

(    )

查看答案和解析>>

同步練習冊答案