【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F

(1)求證:ABEF;

(2)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD

【答案】(1)見解析 (2) 見解析

【解析】

(1)證明:AB∥平面PCD,即可證明ABEF;
2)利用平面PAD⊥平面ABCD,證明CDAF,PA=AD,所以AFPD,即可證明AF⊥平面PCD.

(1)證明:底面ABCD是正方形,

ABCD ,

AB平面PCD,CD平面PCD,

AB∥平面PCD ,

A,BE,F四點(diǎn)共面,且平面ABEF∩平面PCD=EF,

ABEF ;

(2)證明:在正方形ABCD中,CDAD ,

平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,CD平面ABCD,CD平面PAD

CD⊥平面PAD ,

AF平面PAD ,

CDAF ,

由(1)可知,ABEF,

ABCDC,D,E,F在同一平面內(nèi),

CDEF ,

點(diǎn)E是棱PC中點(diǎn),

點(diǎn)F是棱PD中點(diǎn) ,

在△PAD中,PA=AD,

AFPD ,

PDCD=DPD、CD平面PCD,

AF⊥平面PCD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正六邊形ABCDEF的邊長為2,沿對角線AE將△FAE的頂點(diǎn)F翻折到點(diǎn)P處,使得
(1)求證:平面PAE⊥平面ABCDE;
(2)求二面角B﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品在某零售攤位的零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)資料如下表所示:由表可得線性回歸方程中的,據(jù)此模型預(yù)測零售價(jià)為15元時(shí),每天的銷售量為_____個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)《中國新聞網(wǎng)》10月21日報(bào)道,全國很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

態(tài)度
調(diào)查人群

應(yīng)該取消

應(yīng)該保留

無所謂

在校學(xué)生

2100人

120人

y人

社會人士

600人

x人

z人

已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N* , 存在實(shí)數(shù)x使f(x)<2成立.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求證: +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,設(shè)f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設(shè) ,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銀川一中從高二年級學(xué)生中隨機(jī)抽取40名學(xué)生作為樣本,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:后得到如圖的頻率分布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)試估計(jì)我校高二年級在這次數(shù)學(xué)考試的平均分;

(3)若從樣本中數(shù)學(xué)成績在兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

同步練習(xí)冊答案