若直線l與直線y=1,x=7分別交于點P、Q,且線段PQ的中點坐標(biāo)為(1,-1),則直線l的斜率為( 。
A、
1
3
B、-
1
3
C、-
3
2
D、
2
3
考點:斜率的計算公式
專題:直線與圓
分析:利用中點坐標(biāo)公式可得P,Q,再利用斜率的計算公式即可得出,
解答: 解:設(shè)P(x,1),Q(7,y).
∵線段PQ的中點坐標(biāo)為(1,-1),
1=
x+7
2
-1=
1+y
2
,解得x=-5,y=-3.
∴P(-5,1),
∴直線l的斜率=
-1-1
1-(-5)
=-
1
3

故選:B.
點評:本題考查了中點坐標(biāo)公式、斜率的計算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
a
3x+1
是奇函數(shù).
(1)求a的值,并用定義證明f(x)是R上的增函數(shù);
(2)當(dāng)x∈[-1,2]時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1,曲線y=f(x)在(1,f(1))處的切線方程為y=4x-1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)的圖象與直線y=kx-1有三個公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+3=0的傾斜角是( 。
A、30°B、45°
C、60°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=8,∠B=60°,∠C=75°,則b等于( 。
A、4
6
B、4
5
C、4
3
D、
22
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意實數(shù)x,規(guī)定[x]是不超過x的最大整數(shù),如[-1.5]=-2,[1.14]=1等,則當(dāng)x∈(-0.5,2.5)時,函數(shù)f(x)=[x]+1的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x-1
lg(2x+1)
,則f(x)的定義域是( 。
A、(
1
2
,+∞)
B、[-
1
2
,+∞)
C、[
1
2
,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足z•(1-i)=2,則復(fù)數(shù)z的模|z|等于( 。
A、
2
B、2
C、
5
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
1
x
,g(x)=lnx.
(1)求函數(shù)f(x)在點(1,0)處的切線y=h(x);
(2)在(1)的條件下,證明:對任意的x∈(0,+∞),h(x)-g(x)≥
1
2
f(x)恒成立;
(3)若對于任意的x1>x2>0,f(x1)-f(x2)>m[g(x1)-g(x2)]都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案