14.設(shè)集合A={-1,0,1,2,3},B={x|x2-2x>0},則A∩B=( 。
A.{3}B.{2,3}C.{-1,3}D.{0,1,2}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:x(x-2)>0,
解得:x<0或x>2,即B={x|x<0或x>2},
∵A={-1,0,1,2,3},
∴A∩B={-1,3},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是一個(gè)空間幾何體的三視圖(注:正視圖也稱主視圖,側(cè)視圖也稱為左視圖),其中正視圖和側(cè)視圖都是邊長(zhǎng)為6的正三角形,俯視圖是直徑等于6的圓,則這個(gè)空間幾何體的表面積為( 。
A.18πB.27πC.$\frac{82π}{3}$D.$\frac{83π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若2sinx+cosx=$\sqrt{2}$cosx,則tanx=$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知cosα=-$\frac{\sqrt{5}}{5}$,tanβ=$\frac{1}{3}$,π<α<$\frac{3}{2}$π,0<β<$\frac{π}{2}$,則α-β的值為$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=loga(2x+b-l)(a>0,a≠1的圖象如圖所示,則函數(shù)g(x)=ax-b的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校為了提倡素質(zhì)教育,豐富學(xué)生們的課外活動(dòng)分別成立繪畫,象棋和籃球興趣小組,現(xiàn)有甲,乙,丙、丁四名同學(xué)報(bào)名參加,每人僅參加一個(gè)興趣小組,每個(gè)興趣小組至少有一人報(bào)名,則不同的報(bào)名方法有( 。
A.12種B.24種C.36種D.72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某中學(xué)一名數(shù)學(xué)老師對(duì)全班50名學(xué)生某次考試成績(jī)分男女進(jìn)行了統(tǒng)計(jì)(滿分150分),得到右面頻率分布表:其中120分(含120分)以上為優(yōu)秀.
(1)根據(jù)以上頻率表的數(shù)據(jù),完成下面的2×2列聯(lián)表:
(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與性別之間的關(guān)系?
(3)若從成績(jī)及在[130,140]的學(xué)生中任取3人,已知取到的第一個(gè)人是男生,求取到的另外2人中至少有1名女生的概率.
分組頻率
男生女生
[80,90]00.02
[90,100]0.040.08
[100,110]0.060.12
[110,120]0.100.18
[120,130]0.180.10
[130,140]0.080.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖,正視圖和俯視圖都是由一個(gè)邊長(zhǎng)為2的正方形組成,俯視圖是一個(gè)圓,則這個(gè)幾何體的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,∠A=2∠B,則$\frac{c}$-$\frac{a}$的取值范圍是(-1,$\frac{5}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案