【題目】已知橢圓的焦距為,點在橢圓.

1)求橢圓方程;

2)設直線與橢圓交于,兩點,且直線,,的斜率之和為0.

①求證:直線經(jīng)過定點,并求出定點坐標;

②求面積的最大值.

【答案】1;(2)①證明見解析;②1

【解析】

(1)由條件有,將點代入橢圓方程結(jié)合,可求解橢圓方程.
(2) ①設點,,設直線,,的斜率分別為,由條件有,將直線方程與橢圓方程聯(lián)立,將,代入化簡可得,得到直線過定點.
②由①利用弦長公式可求出,再求出原點到直線的距離,則的面積可表示出來,從而可求其最大值.

解:(1)由題意可得,又由點在橢圓上,故得,

,解得.

∴橢圓的方程為;

2)設點,.

聯(lián)立

,

化簡得①,②,

設直線,,的斜率分別為

直線,的斜率之和為0,∴,

,

,又,∴.

綜上可得,直線經(jīng)過定點.

②由①知.

,

原點到直線的距離.

,

,

當且僅當,即”.

,即面積的最大值為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面平面,.

(1)求證:平面;

(2)求平面與平面夾角的余弦值,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,高度為圓錐高度的細管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒?

2全部漏入下部,恰好堆成一蓋沙漏底的圓錐形沙求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某集團公司為了加強企業(yè)管理,樹立企業(yè)形象,考慮在公司內(nèi)部對遲到現(xiàn)象進行處罰.現(xiàn)在員工中隨機抽取200人進行調(diào)查,當不處罰時,有80人會遲到,處罰時,得到如下數(shù)據(jù):

處罰金額(單位:元)

50

100

150

200

遲到的人數(shù)

50

40

20

0

若用表中數(shù)據(jù)所得頻率代替概率.

(Ⅰ)當處罰金定為100元時,員工遲到的概率會比不進行處罰時降低多少?

(Ⅱ)將選取的200人中會遲到的員工分為,兩類:類員工在罰金不超過100元時就會改正行為;類是其他員工.現(xiàn)對類與類員工按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類員工的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中點。

(Ⅰ)求證:平面PDC⊥平面PAD;

(Ⅱ)求證:BF∥平面PAD。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱中,,,點E上,且.

1)求異面直線所成角的正切值:

2)求證:平面DBE;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓過點,,為橢圓的左、右焦點,離心率為,圓的直徑為.

1)求橢圓及圓的方程;

2)設直線與圓相切于第一象限內(nèi)的點.

①若直線與橢圓有且只有一個公共點,求點的坐標;

②若直線與橢圓交于兩點,且的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為,圓內(nèi)一條過點的動弦(與軸不重合),過點的平行線交于點.

1)求出點的軌跡方程;

2)若過點的直線的軌跡方程于不同兩點,,為坐標原點,且,點為橢圓上一點,求點到直線的距離的最大值.

查看答案和解析>>

同步練習冊答案