(2013•南開(kāi)區(qū)二模)如圖,F(xiàn)1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn),過(guò)F1的直線l與C的左、右兩支分別交于A,B兩點(diǎn).若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為( 。
分析:根據(jù)雙曲線的定義可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,從而可求得雙曲線的離心率.
解答:解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,
∵|AB|2+|BF2|2=|AF2|2
∴∠ABF2=90°,
又由雙曲線的定義得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,
∴|AF1|+3-4=5-|AF1|,
∴|AF1|=3.
∴|BF1|-|BF2|=3+3-4=2a,
∴a=1.
在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,又|F1F2|2=4c2
∴4c2=52,
∴c=
13

∴雙曲線的離心率e=
c
a
=
13

故選A.
點(diǎn)評(píng):本題考查雙曲線的簡(jiǎn)單性質(zhì),求得a與c的值是關(guān)鍵,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南開(kāi)區(qū)二模)設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(1)寫(xiě)出函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[-
π
6
,
π
3
]
時(shí),函數(shù)f(x)的最大值與最小值的和為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南開(kāi)區(qū)二模)設(shè)函數(shù)f(x)=lnx-
1
2
ax2+x

(1)當(dāng)a=2時(shí),求f(x)的最大值;
(2)令F(x)=f(x)+
1
2
ax2-x+
a
x
(0<x≤3),以其圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0時(shí),方程mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南開(kāi)區(qū)二模)在△ABC中,若a=2,∠B=60°,b=
7
,則BC邊上的高等于
3
3
2
3
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南開(kāi)區(qū)二模)在某校組織的一次籃球定點(diǎn)投籃測(cè)試中,規(guī)定每人最多投3次.每次投籃的結(jié)果相互獨(dú)立.在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認(rèn)為通過(guò)測(cè)試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投:方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(1)當(dāng)甲同學(xué)選擇方案1時(shí).
①求甲同學(xué)測(cè)試結(jié)束后所得總分等于4的概率:
②求甲同學(xué)測(cè)試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(2)你認(rèn)為甲同學(xué)選擇哪種方案通過(guò)測(cè)試的可能性更大?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案