在(x2-
12x
)9的展開式中,求:

(1)第6項;  
(2)第3項的系數(shù);
(3)常數(shù)項; 
(4)展開式中的所有二項式的系數(shù)和與各項系數(shù)和的比.
分析:(1)求出展開式的通項公式Tr+1=(-1)r2-r•C9r•x18-3r,由此求出第6項為T6
(2)由通項公式求出第3項的系數(shù)為(-1)22-2•C92
(3)令18-3r=0,可得r=6,故常數(shù)項為 T7=(-1)62-6•C96=
21
16

(4)展開式中的所有二項式的系數(shù)和為29,令x=1可得各項系數(shù)和為(
1
2
)
9
,由此求得有二項式的系數(shù)和與各項系數(shù)和的比.
解答:解:(1)展開式的通項公式為 Tr+1=C9r (-1)r x18-2r (2x)-r=(-1)r2-r•C9r•x18-3r
故第6項為 T6=(-1)52-5•C95•x3=-
63
16
 x3
(2)由通項公式求出第3項的系數(shù)為(-1)22-2•C92=9.
(3)令18-3r=0,可得r=6,故常數(shù)項為 T7=(-1)62-6•C96=
21
16

(4)展開式中的所有二項式的系數(shù)和為C90+C91+C92+…+C99=29
令x=1可得各項系數(shù)和為(
1
2
)
9
,故展開式中的所有二項式的系數(shù)和與各項系數(shù)和的比
29
(
1
2
)
9
=218
點評:本題主要考查二項式定理,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì)的應用,注意所有二項式的系數(shù)和與各項系數(shù)和 之間的區(qū)別.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在(x2-
12x
)9的展開式中,求:

(1)第6項;   
(2)第3項的系數(shù);  
(3)常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若f(x)=2x3+3的反函數(shù)為f-1(x),則f-1(5)=1;
②過原點作圓x2+y2-12x+9=0的兩切線,則兩切線所夾的劣弧長為2
3
π

③在△ABC中,已知a=5,b=6,A=30°,則B有一解且B=arcsin
3
5
;
④在樣本頻率分布直方圖中,共有三個長方形,其面積由小到大構(gòu)成等差數(shù)列{an},且a2+a3=0.8,則最大的長方形的面積為
7
15

其中正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:

①若f(x)=2x3+mx2+3的反函數(shù)為f-1(x),則f-1(5)=1;

②過原點作圓x2+y2-12x+9=0的兩切線,則兩切線所夾的劣弧長為2π;

③若α是第一象限角,則“α>βtanα>tanβ”的逆命題是真命題;

④在樣本頻率分布直方圖中,共有三個長方形,其面積由小到大構(gòu)成等差數(shù)列{an},且a2+a3=0.8,則最大的小長方形的面積為.

其中正確命題的序號為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在(x2-
1
2x
)9的展開式中,求:

(1)第6項;   
(2)第3項的系數(shù);  
(3)常數(shù)項.

查看答案和解析>>

同步練習冊答案