在(x2-
12x
)9的展開式中,求:

(1)第6項;   
(2)第3項的系數(shù);  
(3)常數(shù)項.
分析:(1)直接按照二項式定理計算即可
(2)求出第3項后即可得出系數(shù).
(3)在展開式的通項中令x的指數(shù)為0,求出r的值,即可確定常數(shù)項
解答:解:(1)由二項式定理,第6項為
T6=
C
5
9
(x2)4(-
1
2x
)5=-
63
16
x3,即第6項為-
63
16
x3

(2)由二項式定理,第3項為 
T3=
C
2
9
(x2)7(-
1
2x
)2=9x12,故第3項的系數(shù)為9

(3)展開式的通項 Tr+1=(-
1
2
)r
C
r
9
x18-3r

令18-3r=0  得r=6,所以第7項為常數(shù)項
T7=(-
1
2
)6
C
6
9
=
21
16
即常數(shù)項為
21
16
點評:本題考查了二項式定理的簡單直接應用:求指定的項、指定項的系數(shù).屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在(x2-
12x
)9的展開式中,求:

(1)第6項;  
(2)第3項的系數(shù);
(3)常數(shù)項; 
(4)展開式中的所有二項式的系數(shù)和與各項系數(shù)和的比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若f(x)=2x3+3的反函數(shù)為f-1(x),則f-1(5)=1;
②過原點作圓x2+y2-12x+9=0的兩切線,則兩切線所夾的劣弧長為2
3
π
;
③在△ABC中,已知a=5,b=6,A=30°,則B有一解且B=arcsin
3
5
;
④在樣本頻率分布直方圖中,共有三個長方形,其面積由小到大構(gòu)成等差數(shù)列{an},且a2+a3=0.8,則最大的長方形的面積為
7
15

其中正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:

①若f(x)=2x3+mx2+3的反函數(shù)為f-1(x),則f-1(5)=1;

②過原點作圓x2+y2-12x+9=0的兩切線,則兩切線所夾的劣弧長為2π;

③若α是第一象限角,則“α>βtanα>tanβ”的逆命題是真命題;

④在樣本頻率分布直方圖中,共有三個長方形,其面積由小到大構(gòu)成等差數(shù)列{an},且a2+a3=0.8,則最大的小長方形的面積為.

其中正確命題的序號為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在(x2-
1
2x
)9的展開式中,求:

(1)第6項;   
(2)第3項的系數(shù);  
(3)常數(shù)項.

查看答案和解析>>

同步練習冊答案