已知在等比數(shù)列中,,且的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求的前項(xiàng)和

(Ⅰ) ;(Ⅱ).

解析試題分析:(Ⅰ)設(shè)公比是,依據(jù)等比數(shù)列的通項(xiàng)公式表示出,再由已知條件“的等差中項(xiàng)”,結(jié)合等差中項(xiàng)的性質(zhì)得到,解出,代入等比數(shù)列的通項(xiàng)公式;(Ⅱ)先由(Ⅰ)中解得的,求出數(shù)列的通項(xiàng)公式:,觀察可知它可以分為一個(gè)等差數(shù)列和一個(gè)等比數(shù)列,結(jié)合等差數(shù)列和等比數(shù)列的前項(xiàng)和公式求的前項(xiàng)和.
試題解析:(Ⅰ)設(shè)公比為,
,,
的等差中項(xiàng),
,

解得,
.
(Ⅱ)由(Ⅰ)可知,,


.
考點(diǎn):1.等差數(shù)列的前項(xiàng)和;2.等比數(shù)列的前項(xiàng)和;3.等差中項(xiàng);4.等比數(shù)列的通項(xiàng)公式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,,,是數(shù)列 的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項(xiàng);
②若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大。
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足).
(1)若數(shù)列是等差數(shù)列,求它的首項(xiàng)和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若,),試求實(shí)數(shù)的值,使得數(shù)列為等比數(shù)列;并求此時(shí)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,且,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列前n項(xiàng)和為,且,令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列前n項(xiàng)和為,首項(xiàng)為,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:.
(1)求的通項(xiàng)公式;
(2)若(),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是等差數(shù)列的前項(xiàng)和,滿足是數(shù)列的前項(xiàng)和,滿足:
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等比數(shù)列,是等差數(shù)列,
(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)設(shè),,其中,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列項(xiàng)和,數(shù)列滿足),
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:當(dāng)時(shí),數(shù)列為等比數(shù)列;
(3)在題(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為,若數(shù)列中只有最小,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案