把函數(shù)y=sin(2x+
π
3
)
先向右平移
π
2
個單位,然后向下平移2個單位后所得的函數(shù)解析式為
y=sin(2x-
3
)-2
y=sin(2x-
3
)-2
分析:第一次變換得到y(tǒng)=sin(2x-
3
)的圖象,再進行第二次變換可得y=sin(2x-
3
)-2 的圖象.
解答:解:把函數(shù)y=sin(2x+
π
3
)
先向右平移
π
2
個單位,得到y(tǒng)=sin[2(x-
π
2
)+
π
3
]=sin(2x-
3
)的圖象,
再向下平移2個單位后所得的函數(shù)解析式為 y=sin(2x-
3
)-2,
故答案為 y=sin(2x-
3
)-2.
點評:本題主要考查函數(shù)y=Asin(ωx+∅)的圖象變換,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
6
)的圖象,只需把函數(shù)y=sin(2x-
π
3
)的圖象( 。
A、向左平移
π
4
個長度單位
B、向右平移
π
4
個長度單位
C、向左平移
π
2
個長度單位
D、向右平移
π
2
個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sin(5x-
π
2
)
的圖象向右平移
π
4
個單位,再把所得函數(shù)圖象上各點的橫坐標縮短為原來的
1
2
,所得的函數(shù)解析式為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結論錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中,正確命題的序號是

①△ABC中,A>B的充要條件是sinA>sinB;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點的充要條件是f(1)•f(2)<0;
③等比數(shù)列{an}中,a1=1,a5=16,則a3=±4;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個單位后,得到的圖象對應的解析式為y=sin(4-2x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=sin(x-
π
3
)
的圖象,只需把函數(shù)y=sin(x+
π
6
)
的圖象( 。
A、向左平移
π
4
個長度單位
B、向右平移
π
4
個長度單位
C、向左平移
π
2
個長度單位
D、向右平移
π
2
個長度單位

查看答案和解析>>

同步練習冊答案