8.已知向量$\overrightarrow{a}$=(-1,6),$\overrightarrow$=(3,-2),則$\overrightarrow{a}$+$\overrightarrow$=( 。
A.(4,4)B.(2,4)C.(-2,4)D.(-4,4)

分析 由題意和向量的坐標(biāo)運(yùn)算即可求出答案.

解答 解:因?yàn)橄蛄?\overrightarrow{a}$=(-1,6),$\overrightarrow$=(3,-2),
則$\overrightarrow{a}$+$\overrightarrow$=(2,4),
故選B.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為( 。
A.$\frac{\sqrt{6}}{3π}$B.$\frac{\sqrt{6}}{6π}$C.$\frac{3\sqrt{2}}{8π}$D.$\frac{3\sqrt{2}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.二項(xiàng)式(ax2-$\frac{2}{\sqrt{x}}$)n展開式的二項(xiàng)式系數(shù)之和為32,其中常數(shù)項(xiàng)為160,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若經(jīng)過點(diǎn)(-4,a),(-2,6)的直線與直線x-2y-8=0垂直,則a的值為( 。
A.$\frac{5}{2}$B.$\frac{2}{5}$C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD1所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)A(-1,2),B(1,-3),點(diǎn)P在線段AB的延長(zhǎng)線上,且$\frac{|\overrightarrow{AP}|}{|\overrightarrow{PB}|}$=3,則點(diǎn)P的坐標(biāo)為( 。
A.(3,-$\frac{11}{2}$)B.($\frac{1}{2}$,-$\frac{11}{4}$)C.(2,-$\frac{11}{2}$)D.($\frac{1}{2}$,-$\frac{7}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=cos2x+sinxcosx-$\frac{1}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的圖象的對(duì)稱軸方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2x+2ax(a為實(shí)數(shù)),且f(1)=$\frac{5}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)判斷函數(shù)f(x)在區(qū)間[0,+∞)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ex-$\frac{a}{x}$,a,f(x)為實(shí)數(shù).
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上存在極值點(diǎn),且極值大于ln4+2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案