【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

【答案】1;(2

【解析】

試題(1)先求出,設(shè)出切點(diǎn),利用切線方程求得,進(jìn)而求得的值;(2)問題轉(zhuǎn)化為存在唯一的整數(shù),使的最小值小于零,利用導(dǎo)數(shù)求其極值,數(shù)形結(jié)合可得 ,且,即可得的取值范圍.

試題解析:

1)函數(shù)的定義域?yàn)?/span>,,

設(shè)切點(diǎn),則切線的斜率,

所以切線為

因?yàn)?/span>恒過點(diǎn),斜率為,且為的一條切線,

所以

所以,所以

2)令,

,

當(dāng)時(shí),,,

,上遞增,

,又

則存在唯一的整數(shù)使得,即

當(dāng)時(shí),為滿足題意,上不存在整數(shù)使,

上不存在整數(shù)使,

,

當(dāng)時(shí),

上遞減,

當(dāng)時(shí),,

;

當(dāng)時(shí),,不符合題意.

綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機(jī)樣本數(shù)據(jù),如下表:

根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.

(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:

(i)求;

(ii)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.

(2)若y關(guān)于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量。

附:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,如圖.

現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,,,為等邊三角形,平面平面中點(diǎn).

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若恒成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓是長軸的一個(gè)端點(diǎn),弦過橢圓的中心O,點(diǎn)C在第一象限,且,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)P、Q為橢圓上不重合的兩點(diǎn)且異于AB,若的平分線總是垂直于x軸,問是否存在實(shí)數(shù),使得?若不存在,請說明理由;若存在,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)說法,其中正確的是( )

A.命題“若,則”的否命題是“若,則

B.”是“雙曲線的離心率大于”的充要條件

C.命題“,”的否定是“,

D.命題“在中,若,則是銳角三角形”的逆否命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:對任意兩個(gè)正整數(shù),至少有一個(gè)成立,則稱這個(gè)數(shù)列為“和諧數(shù)列”.

(Ⅰ)求證:若數(shù)列為等差數(shù)列,則為“和諧數(shù)列”;

(Ⅱ)求證:若數(shù)列為“和諧數(shù)列”,則數(shù)列從第項(xiàng)起為等差數(shù)列;

(Ⅲ)若是各項(xiàng)均為整數(shù)的“和諧數(shù)列”,滿足,且存在使得,,求p的所有可能值.

查看答案和解析>>

同步練習(xí)冊答案