12.己知正四棱錐S-ABCD的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,E是SB的中點(diǎn),則AE,SD所成角的余弦值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

分析 根據(jù)異面直線所成角的定義可得分別取SC,DC,AD邊的中點(diǎn)F,G,H易得EF∥HA,EF=HA,故四邊形AEFH為平行四邊形,所以AE∥DF,又根據(jù)中點(diǎn)的性質(zhì)可得FG∥SD從而將異面直線轉(zhuǎn)化為了相交直線,即∠HFG或其補(bǔ)角即為異面直線AE、SD所成的角,然后再利用余弦定理,求∠HFG的余弦值即可.

解答 解:由于正四棱錐S-ABCD的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,故不妨設(shè)棱長(zhǎng)為a.
取SC的中點(diǎn)F,連接EF,則EF∥BC,EF=$\frac{1}{2}$BC,
取AD的中點(diǎn)H連接HF則可得EF∥HA,EF=HA,
故四邊形AEFH為平行四邊形,所以AE∥HF.
再取DC中點(diǎn)G,連接HG,則FG∥SD,
所以∠HFG或其補(bǔ)角即為異面直線AE、SD所成的角.
∵HF=AE=$\frac{\sqrt{3}}{2}$a,F(xiàn)G=$\frac{1}{2}$a,HG=$\sqrt{D{H}^{2}+D{G}^{2}}$=$\frac{\sqrt{2}}{2}$A,
∴cos∠HFG$\frac{H{F}^{2}+F{G}^{2}-H{G}^{2}}{2HF•FG}$=$\frac{\sqrt{3}}{3}$>0.
即AE、SD所成的角的余弦值為$\frac{\sqrt{3}}{3}$.
故選C.

點(diǎn)評(píng) 本題主要考查了異面直線所成的角.解題的關(guān)鍵是要緊緊抓住利用平行的傳遞性(通常利用平行四邊形的性質(zhì)或中位線定理)將異面直線轉(zhuǎn)化為相交直線然后在三角形中利用余弦定理求解(要注意的是利用于余弦值的正負(fù)判斷是這個(gè)角還是這個(gè)角的補(bǔ)角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={y|y=2x,0≤x≤1},集合B={1,2,3,4},則A∩B等于( 。
A.{0,1}B.{1,2}C.{2,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}=($\frac{1}{2}$)n,有a1bn+a2bn-1+a3bn-2+…+anb1=n-1+$\frac{1}{{2}^{n}}$
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若集合M={n|anbn≥λ,n∈N*}中有且只有4個(gè)元素,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)A(x1,y1),B(x2,y2)是橢圓上的兩點(diǎn),已知向量$\overrightarrow{m}$=($\frac{{x}_{1}}$,$\frac{{y}_{1}}{a}$),向量$\overrightarrow$=($\frac{{x}_{2}}$,$\frac{{y}_{2}}{a}$),若$\overrightarrow{m}•\overrightarrow{n}$=0,且橢圓的離心率為e=$\frac{\sqrt{3}}{2}$,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)若直線AB過(guò)橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;
(3)△AOB的面積是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.一對(duì)父子參加一個(gè)親子摸獎(jiǎng)游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個(gè)的甲袋子里隨機(jī)取兩個(gè)球,兒子在裝有紅色、白色、黑色球各一個(gè)的乙袋子里隨機(jī)取一個(gè)球,父子倆取球相互獨(dú)立,兩人各摸球一次合在一起稱為一次摸獎(jiǎng),他們?nèi)〕龅娜齻(gè)球的顏色情況與他們獲得的積分對(duì)應(yīng)如表:
所取球的情況三個(gè)球均為紅色三個(gè)球均不同色恰有兩球?yàn)榧t色其他情況
所獲得的積分18090600
(Ⅰ)求一次摸獎(jiǎng)中,所取的三個(gè)球中恰有兩個(gè)是紅球的概率;
(Ⅱ)設(shè)一次摸獎(jiǎng)中,他們所獲得的積分為X,求X的分布列及均值(數(shù)學(xué)期望)E(X);
(Ⅲ)按照以上規(guī)則重復(fù)摸獎(jiǎng)三次,求至少有兩次獲得積分為60的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|$\frac{4}{5-x}$>1},集合B={x|3a-1<x<2a},若B?A,則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{2}{3}$,1)B.[$\frac{2}{3}$,$\frac{5}{2}$]C.[$\frac{2}{3}$,+∞)D.($\frac{2}{3}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在?ABCD中,AB=4$\sqrt{6}$cm,AD=4$\sqrt{3}$cm,∠A=45°,求這個(gè)四邊形兩條對(duì)角線的長(zhǎng)度和平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R)
(1)若曲線f(x)在x=1和x=3處的切線互相平行,求函數(shù)f(x)的單調(diào)區(qū)間
(2)若函數(shù)f(x)既有極大值又有極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.袋中共有8個(gè)球,其中有3個(gè)白球,5個(gè)黑球,這些球除顏色外完全相同.從袋中隨機(jī)取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補(bǔ)一個(gè)白球放入袋中.重復(fù)上述過(guò)程n次后,袋中白球的個(gè)數(shù)記為Xn
(1)求隨機(jī)變量X2的概率分布及數(shù)學(xué)期望E(X2);
(2)求隨機(jī)變量Xn的數(shù)學(xué)期望E(Xn)關(guān)于n的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案