A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2}{3}$ |
分析 根據(jù)異面直線所成角的定義可得分別取SC,DC,AD邊的中點(diǎn)F,G,H易得EF∥HA,EF=HA,故四邊形AEFH為平行四邊形,所以AE∥DF,又根據(jù)中點(diǎn)的性質(zhì)可得FG∥SD從而將異面直線轉(zhuǎn)化為了相交直線,即∠HFG或其補(bǔ)角即為異面直線AE、SD所成的角,然后再利用余弦定理,求∠HFG的余弦值即可.
解答 解:由于正四棱錐S-ABCD的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,故不妨設(shè)棱長(zhǎng)為a.
取SC的中點(diǎn)F,連接EF,則EF∥BC,EF=$\frac{1}{2}$BC,
取AD的中點(diǎn)H連接HF則可得EF∥HA,EF=HA,
故四邊形AEFH為平行四邊形,所以AE∥HF.
再取DC中點(diǎn)G,連接HG,則FG∥SD,
所以∠HFG或其補(bǔ)角即為異面直線AE、SD所成的角.
∵HF=AE=$\frac{\sqrt{3}}{2}$a,F(xiàn)G=$\frac{1}{2}$a,HG=$\sqrt{D{H}^{2}+D{G}^{2}}$=$\frac{\sqrt{2}}{2}$A,
∴cos∠HFG$\frac{H{F}^{2}+F{G}^{2}-H{G}^{2}}{2HF•FG}$=$\frac{\sqrt{3}}{3}$>0.
即AE、SD所成的角的余弦值為$\frac{\sqrt{3}}{3}$.
故選C.
點(diǎn)評(píng) 本題主要考查了異面直線所成的角.解題的關(guān)鍵是要緊緊抓住利用平行的傳遞性(通常利用平行四邊形的性質(zhì)或中位線定理)將異面直線轉(zhuǎn)化為相交直線然后在三角形中利用余弦定理求解(要注意的是利用于余弦值的正負(fù)判斷是這個(gè)角還是這個(gè)角的補(bǔ)角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1} | B. | {1,2} | C. | {2,3} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
所取球的情況 | 三個(gè)球均為紅色 | 三個(gè)球均不同色 | 恰有兩球?yàn)榧t色 | 其他情況 |
所獲得的積分 | 180 | 90 | 60 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{2}{3}$,1) | B. | [$\frac{2}{3}$,$\frac{5}{2}$] | C. | [$\frac{2}{3}$,+∞) | D. | ($\frac{2}{3}$,$\frac{5}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com