【題目】已知正數(shù)數(shù)列{an}的前n項和為Sn,滿足 ,.
(1)求數(shù)列{an}的通項公式;
(2)設,若是遞增數(shù)列,求實數(shù)a的取值范圍.
【答案】(1)an=n;(2)(-1,+∞).
【解析】
(1)由 an2=Sn+Sn﹣1(n≥2),可得an﹣12=Sn﹣1+Sn﹣2 (n≥3).兩式相減可得 an﹣an﹣1=1,再由a1=1,可得{an}通項公式.(2)根據(jù){an}通項公式化簡bn和bn+1,由題意得bn+1﹣bn>0恒成立,分離變量即可得a的范圍.
解:(1),=Sn-1+Sn-2,(n≥3).
相減可得:,∵an>0,an-1>0,∴an-an-1=1,(n≥3).
n=2時,=a1+a2+a1,∴=2+a2,a2>0,∴a2=2.因此n=2時,an-an-1=1成立.
∴數(shù)列{an}是等差數(shù)列,公差為1.∴an=1+n-1=n.
(2)=(n-1)2+a(n-1),
∵{bn}是遞增數(shù)列,∴bn+1-bn=n2+an-(n-1)2-a(n-1)=2n+a-1>0,
即a>1-2n恒成立,∴a>-1.
∴實數(shù)a的取值范圍是(-1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失(單位:元),空氣質(zhì)量指數(shù)為.當時,企業(yè)沒有造成經(jīng)濟損失;當對企業(yè)造成經(jīng)濟損失成直線模型(當時造成的經(jīng)濟損失為,當時,造成的經(jīng)濟損失;當時造成的經(jīng)濟損失為2000元;
(1)試寫出的表達式:
(2)在本年內(nèi)隨機抽取一天,試估計該天經(jīng)濟損失超過350元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關(guān)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的極坐標方程與曲線的直角坐標方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】西北某省會城市計劃新修一座城市運動公園,設計平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動場所;四邊形為文藝活動場所,,為運動小道(不考慮寬度),,千米.
(1)求小道的長度;
(2)求球類活動場所的面積最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”……江南梅雨的點點滴滴都流潤著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)2009~2018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
“梅實初黃暮雨深”.請用樣本平均數(shù)估計鎮(zhèn)明年梅雨季節(jié)的降雨量;
“江南梅雨無限愁”.鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,他過去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較大(把握超過八成).而乙品種楊梅2009~2018年的畝產(chǎn)量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分數(shù)據(jù)缺失).請你幫助老李排解憂愁,他來年應該種植哪個品種的楊梅受降雨量影響更?
(完善列聯(lián)表,并說明理由).
畝產(chǎn)量\降雨量 | 合計 | ||
<600 | 2 | ||
1 | |||
合計 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的三個頂點,,,其外接圓為.對于線段上的任意一點,
若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,則的半徑的取值范圍__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com