點(diǎn)(x,y)是區(qū)域|x|+|y|≤1內(nèi)的動(dòng)點(diǎn),求ax-y(a>0)的最大值和最小值。
解:作出約束條件|x|+|y|≤1的可行域,可知當(dāng)a≥1時(shí),ax-y的最大值為a,最小值為-a,當(dāng)0<a<1時(shí),ax-y的最大值為1,最小值為-1。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x-y+2≥0
x+y+2≥0
2x-y-2≤0
所確定的平面區(qū)域記為D.點(diǎn)(x,y)是區(qū)域D上的點(diǎn),若圓O:x2+y2=r2上的所有點(diǎn)都在區(qū)域D上,則圓O的面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(x,y)是區(qū)域
x+2y≤2n
x≥0
y≥0
,(n∈N*)內(nèi)的點(diǎn),目標(biāo)函數(shù)z=x+y,z的最大值記作zn.若數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且點(diǎn)(Sn,an)在直線zn=x+y上.
(Ⅰ)證明:數(shù)列{an-2}為等比數(shù)列;
(Ⅱ)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(x,y)是區(qū)域
x+2y≤2n
x≥0
y≥0
,(n∈N*)內(nèi)的點(diǎn),目標(biāo)函數(shù)z=x+y,z的最大值記作zn.若數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且點(diǎn)(Sn,an)在直線zn=x+y上.
(Ⅰ)證明:數(shù)列{an-2}為等比數(shù)列;
(Ⅱ)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x-y+2≥0
x+y+2≥0
2x-y-2≤0
所確定的平面區(qū)域記為D.若點(diǎn)(x,y)是區(qū)域D上的點(diǎn),則2x+y的最大值是
14
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)不等式組
x-y+2≥0
x+y+2≥0
2x-y-2≤0
所確定的平面區(qū)域記為D.若點(diǎn)(x,y)是區(qū)域D上的點(diǎn),則2x+y的最大值是
14
14
; 若圓O:x2+y2=r2上的所有點(diǎn)都在區(qū)域D上,則圓O的面積的最大值是
4
5
π
4
5
π

查看答案和解析>>

同步練習(xí)冊(cè)答案