【題目】已知拋物線的焦點為F,過點F,斜率為1的直線與拋物線C交于點A,B,且.
(1)求拋物線C的方程;
(2)過點Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點D、E,若直線DR,ER分別交直線于M,N兩點,求|MN|取最小值時直線DE的方程.
【答案】(1);(2).
【解析】
(1)過點F且斜率為的直線方程與拋物線的方程聯(lián)立,利用求得的值,即可求得拋物線的方程;
(2)設(shè)D(x1,y1),E(x2,y2),直線DE的方程為,直線的方程為,由題意求出得值,建立的解析式,再求出的最小值以及直線的方程.
(1)拋物線的焦點為,
直線方程為:,
代入中,消去y得: ,
設(shè)A(x1,y1),B(x2,y2),則有,
由,得,即,解得,
所以拋物線C的方程為:;
(2)設(shè)D(x1,y1),E(x2,y2),直線DE的方程為,如圖所示,
由,消去,整理得:,
∴,
設(shè)直線DR的方程為,
由,解得點M的橫坐標(biāo),
又k1==,∴xM==-,
同理點N的橫坐標(biāo),
=4,
∴|MN|=|xM-xN|=|-+|=2||==,
令,則,
∴|MN|===≥=,
所以當(dāng),即時,|MN|取最小值為,
此時直線DE的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年泉州市農(nóng)村電商發(fā)展迅猛,成為創(chuàng)新農(nóng)產(chǎn)品交易方式、增加農(nóng)民收入、引導(dǎo)農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革、促進(jìn)鄉(xiāng)村振興的重要力量,成為鄉(xiāng)村振興的新引擎.2019年大學(xué)畢業(yè)的李想,選擇回到家鄉(xiāng)泉州自主創(chuàng)業(yè),他在網(wǎng)上開了一家水果網(wǎng)店.2019年雙十一期間,為了增加水果銷量,李想設(shè)計了下面兩種促銷方案:方案一:購買金額每滿120元,即可抽獎一次,中獎可獲得20元,每次中獎的概率為(),假設(shè)每次抽獎相互獨立.方案二:購買金額不低于180元時,即可優(yōu)惠元,并在優(yōu)惠后的基礎(chǔ)上打九折.
(1)在促銷方案一中,設(shè)每10個抽獎人次中恰有6人次中獎的概率為,求的最大值點;
(2)若促銷方案二中,李想每筆訂單得到的金額均不低于促銷前總價的八折,求的最大值;
(3)以(1)中確定的作為的值,且當(dāng)取最大值時,若某位顧客一次性購買了360元,則該顧客應(yīng)選擇哪種促銷方案?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點為平面直角坐標(biāo)系中的一個動點(其中為坐標(biāo)系原點),點到定點的距離比到直線的距離大1,動點的軌跡方程為.
(1)求曲線的方程;
(2)若過點的直線與曲線相交于、兩點.
①若,求直線的直線方程;
②分別過點,作曲線的切線且交于點,是否存在以為圓心,以為半徑的圓與經(jīng)過點且垂直于直線的直線相交于、兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;
(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
有購買意愿對應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時,討論的單調(diào)性;
(2)若,且當(dāng)時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個球在每一次被取出的機(jī)會是等可能的.
(Ⅰ)求袋中原有白球的個數(shù):
(Ⅱ)求取球次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com