設(shè)函數(shù)f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對(duì)稱,且x=1時(shí),f(x)取極小值數(shù)學(xué)公式
(1)求a,b,c,d的值;
(2)若x1,x2∈[-1,1]時(shí),求證:數(shù)學(xué)公式

解:(1)∵函數(shù)f(x)圖象關(guān)于原點(diǎn)對(duì)稱,∴對(duì)任意實(shí)數(shù)x,都有f(-x)=-f(x).
∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,即bx2-2d=0恒成立.
∴b=0,d=0,即f(x)=ax3+cx.∴f′(x)=3ax2+c.
∵x=1時(shí),f(x)取極小值-.∴f′(1)=0且f(1)=-,
即3a+c=0且a+c=-.解得a=,c=-1.(6分)
(2)證明:∵f′(x)=x2-1,由f′(x)=0,得x=±1.
當(dāng)x∈(-∞,-1)或(1,+∞)時(shí),f′(x)>0;當(dāng)x∈(-1,1)時(shí),f′(x)<0.
∴f(x)在[-1,1]上是減函數(shù),且fmax(x)=f(-1)=,fmin(x)=f(1)=-
∴在[-1,1]上,|f(x)|≤
于是x1,x2∈[-1,1]時(shí),|f(x1)-f(x2)|≤|f(x)max-f(x)min|=+=
故x1,x2∈[-1,1]時(shí),|f(x1)-f(x2)|≤.(12分)
分析:(1)根據(jù)奇偶性判斷b、d的值,再有在1處的極值求出a、c.
(2)函數(shù)在1和-1處取代極值,判斷其為最值,根據(jù)兩最值之差最大,證明問(wèn)題.
點(diǎn)評(píng):該題考查函數(shù)奇偶性對(duì)應(yīng)的奇數(shù)次項(xiàng)系數(shù)的值以及偶數(shù)次項(xiàng)系數(shù)的值,考查反正發(fā)的使用,考查兩數(shù)之間最值之差最大,為中等題,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過(guò)點(diǎn)(1,7),又其反函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項(xiàng)是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊(cè)答案