精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線(xiàn)段AM上,點(diǎn)N在線(xiàn)段CM上,且滿(mǎn)足
AM
=2
AP
NP
AM
=0
,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足
FG
FH
,求λ
的取值范圍.
分析:(1)利用線(xiàn)段垂直平分線(xiàn)的性質(zhì)推出 NC+NM=r=2
2
>AC,再利用橢圓的定義知,點(diǎn)N的軌跡是以A、C 為焦點(diǎn)的橢圓,利用待定系數(shù)法求出橢圓的方程
(2)不妨設(shè)FH斜率為k,且將原點(diǎn)移至F,則直線(xiàn)FH方程為y=kx,則橢圓方程變?yōu)?span id="p0txhg0" class="MathJye">
x2
2
+(y-2)2=1,將直線(xiàn)與橢圓方程聯(lián)立得(1+2k2)x2-8kx+6=0,結(jié)合題設(shè)條件求參數(shù)λ的范圍
解答:解:(1)設(shè)點(diǎn)N的坐標(biāo)為(x,y),
AM
=2
AP
,∴點(diǎn)P為AM的中點(diǎn),
NP
AM
=0,∴NP⊥AM,∴NP是線(xiàn)段AM的垂直平分線(xiàn),∴NM=NA,
又點(diǎn)N在CM上,設(shè)圓的半徑是 r,則 r=2
2

∴NC=r-NM,∴NC+NM=r=2
2
>AC,
∴點(diǎn)N的軌跡是以A、C 為焦點(diǎn)的橢圓,
∴2a=2
2
,c=1,可求得b=1,
∴橢圓
x2
2
+y2=1
,即曲線(xiàn)E的方程:
x2
2
+y2=1

(2)當(dāng)斜率不存在時(shí),直線(xiàn)與曲線(xiàn)E有2個(gè)交點(diǎn)此時(shí)參數(shù)的值為λ=
1
3
,
不妨設(shè)FH斜率為k,且將原點(diǎn)移至F,
則直線(xiàn)FH方程為y=kx,橢圓方程變?yōu)?span id="kcagerw" class="MathJye">
x2
2
+(y-2)2=1,
將直線(xiàn)方程代入橢圓得
x2
2
+(kx-2)2=1,整理得(1+2k2)x2-8kx+6=0,
直線(xiàn)與曲線(xiàn)E有二不同的交點(diǎn),故△=(-8k)2-4•6(1+2k2)=16k2-24>0,即k2
3
2

因?yàn)樽笥覍?duì)稱(chēng),可以研究單側(cè),
當(dāng)k>0時(shí),λ=
x1
x2
=
-b-
b2-4ac
-b+
b2-4ac
即λ=
8k-
16k2-24
8k+
16k2-24
=
2-
1-
3
2k2
2+
1-
3
2k2

由k2
3
2
,即0<
3
2k2
<1
,即0<
1-
3
2k2
?
<1
,
令t=
1-
3
2k2
?
∈(0,1),則λ=
2-t
2+t
,t∈(0,1),
由于λ=
2-t
2+t
=
4
2+t
-1
,故函數(shù)在t∈(0,1)上是減函數(shù),故
1
3
<λ<1

綜上,參數(shù)的取值范圍是
1
3
≤λ<1
點(diǎn)評(píng):本題考查直線(xiàn)與圓錐曲線(xiàn)的綜合題,解題的關(guān)鍵是掌握?qǐng)A錐曲線(xiàn)的定義,由題設(shè)條件判斷出所求的軌跡是橢圓,以及能將求兩線(xiàn)段比值的問(wèn)題轉(zhuǎn)化為坐標(biāo)比值,以利于用直線(xiàn)與圓錐曲線(xiàn)的方程研究參數(shù)的取值范圍,本題解題過(guò)程中把曲線(xiàn)中心移到點(diǎn)(0,2),重新建系,使得橢圓方程得以簡(jiǎn)化且給后續(xù)解題帶來(lái)了極大的方便,使問(wèn)題轉(zhuǎn)化為在k>0上求參數(shù)的范圍,解題時(shí)要注意此類(lèi)技巧的使用.本題綜合性強(qiáng)運(yùn)算較繁雜,做題時(shí)要嚴(yán)謹(jǐn)認(rèn)真.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
,
NP
AM
=0,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)過(guò)點(diǎn)S(0,
1
3
)且斜率為k的動(dòng)直線(xiàn)l交曲線(xiàn)E于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)G,滿(mǎn)足
GP
=
GA
+
GB
使四邊形NAPB為矩形?若存在,求出G的坐標(biāo)和四邊形NAPB面積的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿(mǎn)足AM=2AP,NP⊥AM,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)l交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足FG=
1
2
FH
,求直線(xiàn)l的方程;
(3)設(shè)曲線(xiàn)E的左右焦點(diǎn)為F1,F(xiàn)2,過(guò)F1的直線(xiàn)交曲線(xiàn)于Q,S兩點(diǎn),過(guò)F2的直線(xiàn)交曲線(xiàn)于R,T兩點(diǎn),且QS⊥RT,垂足為W;
(。┰O(shè)W(x0,y0),證明:
x
2
0
2
+
y
2
0
<1
;
(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•石景山區(qū)一模)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
NP
AM
=0
,點(diǎn)N的軌跡為曲線(xiàn)E.
(Ⅰ) 求曲線(xiàn)E的方程;
(Ⅱ) 若點(diǎn)B1(x1,y1),B2(-1,y2),B3(x3,y3)在曲線(xiàn)E上,線(xiàn)段B1B3的垂直平分線(xiàn)為直線(xiàn)l,且|B1A|,|B2A|,|B3A|成等差數(shù)列,求x1+x3的值,并證明直線(xiàn)l過(guò)定點(diǎn);
(Ⅲ)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足
FG
FH
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
,
NP
AM
=0,點(diǎn)N的軌跡方程是( 。
A、
x2
2
+y2=1
B、
x2
2
-y2=1
C、x2+
y2
2
=1
D、x2-
y2
2
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案