設(shè)
OM
=(1,
1
2
),
ON
=(0,1),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足0≤
OP
OM
≤1,0≤
OP
ON
≤1,則z=x2+y2的最大值是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的運(yùn)算性質(zhì)可得點(diǎn)P滿足的可行域,再利用兩點(diǎn)間的距離公式即可得出.
解答: 解:∵
OM
=(1,
1
2
),
ON
=(0,1),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足0≤
OP
OM
≤1,0≤
OP
ON
≤1,
0≤x+
1
2
y≤1
,0≤y≤1.
畫出可行域:
由圖象可知:當(dāng)P取點(diǎn)A(-
1
2
,1)
時(shí),|OP|取得最大值
x2+y2
=
(-
1
2
)2+12
=
5
4

∴z=x2+y2的最大值是
5
4

故答案為:
5
4
點(diǎn)評(píng):本題綜合考查了數(shù)量積的運(yùn)算性質(zhì)、線性規(guī)劃中的可行域、兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí)與基本技能方法,考查了數(shù)形結(jié)合的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.其中常數(shù)a>0
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線l的方程為y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)
x-x0
>0在D內(nèi)恒成立,則稱P為y=h(x)的“類對(duì)稱點(diǎn)”,當(dāng)a=4時(shí),試問y=f(x)是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,S5=4,S10=12,則S15=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=sin(2x+
π
6
)在x=
π
12
處切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x-1)2+(y-2)2=9,C2:(x+3)2+(y-1)2=1,則兩圓的外公切線段長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α的終邊過點(diǎn)(4,3),角β的終邊過點(diǎn)(-7,1),則sin(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù) x,y 滿足方程x2+y2-4x+1=0,則
y
x
的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x,x∈(-∞,a)
x2,x∈[a,+∞)
,若f(2)=4,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一個(gè)“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個(gè)數(shù)列叫“等積數(shù)列”,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,公積為3,則這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案