如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=2,AB=6,E、F分別為A1D1、D1C1的中點(diǎn).分別以DA、DC、DD1所在直線(xiàn)為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz.
①求點(diǎn)E、F的坐標(biāo);
②求證:EF∥ACD1

(1)解:由題意,AD=AA1=2,AB=6,E、F分別為A1D1、D1C1的中點(diǎn)
∴E(1,0,2),F(xiàn)(0,3,2)
(2)證明:∵A(2,0,0),C(0,6,0)
=(-2,6,0),
∵E(1,0,2),F(xiàn)(0,3,2)
=(-1,3,0)

∴AC∥EF
∵EF?平面ACD1,AC?平面ACD1
∴EF∥平面ACD1
分析:(1)根據(jù)坐標(biāo)系,利用坐標(biāo)的定義,可得結(jié)論;
(2)求出、的坐標(biāo),可得,從而可得線(xiàn)線(xiàn)平行,即可得到線(xiàn)面平行.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查線(xiàn)面平行,正確求出向量的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在長(zhǎng)方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個(gè)數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,定義八個(gè)頂點(diǎn)都在某圓柱的底面圓周上的長(zhǎng)方體叫做圓柱的內(nèi)接長(zhǎng)方體,圓柱也叫長(zhǎng)方體的外接圓柱.設(shè)長(zhǎng)方體ABCD-A1B1C1D1的長(zhǎng)、寬、高分別為a,b,c(其中a>b>c),那么該長(zhǎng)方體的外接圓柱側(cè)面積的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱(chēng)這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱(chēng)這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(文科做)(本題滿(mǎn)分14分)如圖,在長(zhǎng)方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).

(1)證明:D1EA1D;

(2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

(3)AE等于何值時(shí),二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿(mǎn)分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =M為側(cè)棱CC1上一點(diǎn),AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點(diǎn)C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案