【題目】依法納稅是每個公民應(yīng)盡的義務(wù),個人取得的所得應(yīng)依照《中華人民共和國個人所得稅法》向國家繳納個人所得稅(簡稱個稅).2019年1月1日起,個稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計(jì)算公式為:
個稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).
應(yīng)納稅所得額的計(jì)算公式為:
應(yīng)納稅所得額=綜合所得收入額-免征額-專項(xiàng)扣除-專項(xiàng)附加扣除-依法確定的其他扣除.
其中免征額為每年60000元,稅率與速算扣除數(shù)見下表:
級數(shù) | 全年應(yīng)納稅所得額所在區(qū)間 | 稅率() | 速算扣除數(shù) |
1 | 3 | 0 | |
2 | 10 | 2520 | |
3 | 20 | 16920 | |
4 | 25 | 31920 | |
5 | 30 | 52920 | |
6 | 35 | 85920 | |
7 | 45 | 181920 |
備注:
“專項(xiàng)扣除”包括基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會保險(xiǎn)費(fèi)和住房公積金。
“專項(xiàng)附加扣除”包括子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等支出。
“其他扣除”是指除上述免征額、專項(xiàng)扣除、專項(xiàng)附加扣除之外,由國務(wù)院決定以扣除方式減少納稅的優(yōu)惠政策規(guī)定的費(fèi)用。
某人全年綜合所得收入額為160000元,假定繳納的基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會保險(xiǎn)費(fèi)和住房公積金占綜合所得收入額的比例分別是,,,,專項(xiàng)附加扣除是24000元,依法確定其他扣除是0元,那么他全年應(yīng)繳納綜合所得個稅____元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)40名數(shù)學(xué)教師,按年齡從小到大編號為1,2,…40,F(xiàn)從中任意選取6人分成兩組分配到A,B兩所學(xué)校從事支教工作,其中三名編號較小的教師在一組,三名編號較大的教師在另一組,那么編號為8,12,28的數(shù)學(xué)教師同時(shí)入選并被分配到同一所學(xué)校的方法種數(shù)是
A. 220 B. 440 C. 255 D. 510
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的各項(xiàng)都是正數(shù),其前項(xiàng)和為,且滿足:,,其中,常數(shù).
(1)求證:是一個定值;
(2)若數(shù)列是一個周期數(shù)列(存在正整數(shù),使得對任意,都有成立,則稱為周期數(shù)列,為它的一個周期),求該數(shù)列的最小周期;
(3)若數(shù)列是各項(xiàng)均為有理數(shù)的等差數(shù)列,(),問:數(shù)列中的所有項(xiàng)是否都是數(shù)列中的項(xiàng)?若是,請說明理由;若不是,請舉出反例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集,關(guān)于的不等式()的解集為.
(1)求集合;
(2)設(shè)集合,若 中有且只有三個元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與橢圓相交于點(diǎn)M(0,1),N(0,-1),且橢圓的離心率為.
(1)求的值和橢圓C的方程;
(2)過點(diǎn)M的直線交圓O和橢圓C分別于A,B兩點(diǎn).
①若,求直線的方程;
②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點(diǎn).
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點(diǎn),點(diǎn)滿足,點(diǎn),若直線斜率為,求面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,動點(diǎn)P與定點(diǎn)的距離和它到定直線的距離之比是,設(shè)動點(diǎn)P的軌跡為E.
(1)求動點(diǎn)P的軌跡E的方程;
(2)設(shè)過F的直線交軌跡E的弦為AB,過原點(diǎn)的直線交軌跡E的弦為CD,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓 的長軸,長為4,過橢圓的右焦點(diǎn)作斜率為()的直線交橢圓于、兩點(diǎn),直線,的斜率之積為.
(1)求橢圓的方程;
(2)已知直線,直線,分別與相交于、兩點(diǎn),設(shè)為線段的中點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com