四邊形與都是邊長為的正方形,點E是的中點,平面
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐A—BDE的體積
(1)詳見解析;(2)詳見解析;(3)
解析試題分析:(1)求證:平面,證明線面平行,先證明線線平行,即在平面找一條直線與平行,故設(shè)BD交AC于M,連結(jié)ME由三角形的中位線定理可得,結(jié)合線面平行的判定定理,即可得到平面;(2)求證:平面平面,先證明線面垂直,即證一個平面過另一個平面的垂線,根據(jù)已知條件,得到, 由線面垂直的判定定理可得平面,再由面面垂直的判定定理,可得平面平面;(3)求三棱錐的體積,直接求三棱錐的體積不好求,可進(jìn)行等體積轉(zhuǎn)化,即轉(zhuǎn)化求三棱錐的體積,而三棱錐的底面積及都能求出,從而得解
試題解析:(1)設(shè)BD交AC于M,連結(jié)ME
∵ABCD為正方形,所以M為AC中點,
又∵E為的中點 ∴ME為的中位線
∴又∵平面平面
∴平面 4分
(2)∵ABCD為正方形 ∴
∵平面平面
又平面平面平面
∵平面平面
∴平面平面 8分
(3) V= 12分
考點:平面與平面垂直的判定;棱柱、棱錐、棱臺的體積;直線與平面平行的判定
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱柱ABC A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.
(1)求證:平面A1BC⊥平面ACC1A1;
(2)如果D為AB的中點,求證:BC1∥平面A1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面為梯形,,,,平面平面,.
(1)求證:平面;
(2)求證:;
(3)是否存在點,到四棱錐各頂點的距離都相等?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:直線AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,平面,,, ,分別是,的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com