極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸.已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(其中為參數(shù))
(1)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)判斷曲線和曲線的位置關(guān)系;若曲線和曲線相交,求出弦長.
(1):,;(2)
解析試題分析:(1)利用極坐標(biāo)系中點(diǎn)轉(zhuǎn)化為直角坐標(biāo)系中的點(diǎn)的方法可求得C1:,C2: ;(2)利用點(diǎn)到直線的距離公式可求得d==,然后再求弦長.
試題解析:(1)由得,所以,
即曲線: 3分
由得,, 5分
即曲線 6分;
(2)由(1)得,圓的圓心為(2,0),半徑為2, 7分
圓心到直線的距離為 8分
所以曲線和曲線的相交 9分
所求弦長為: 13分.
考點(diǎn):1,極坐標(biāo)系中點(diǎn)轉(zhuǎn)為直坐標(biāo)系中的點(diǎn)的方法2,點(diǎn)到直線的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線: (為參數(shù)),:(為參數(shù)).
(1)化,的方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,為上的動(dòng)點(diǎn),求中點(diǎn)到直線:(為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數(shù)方程為(α為參數(shù))已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的極坐標(biāo)方程為ρ2-4ρ·cos+6=0.
(1)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為,
.
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在C上,C在D處的切線與直線垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為
(為參數(shù)),點(diǎn)的極坐標(biāo)為,設(shè)直線與圓交于點(diǎn)、.
(1)寫出圓的直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤α<π)。以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為
ρcos2θ=4sinθ。
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A、B,若,求α的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com