A. | [-1,+∞) | B. | (-1,+∞) | C. | (-∞,-1] | D. | (-∞,-1) |
分析 求導(dǎo)函數(shù)后,由已知f′(x)=-x+2+$\frac{x}$,在(1,+∞)上恒成立.分離b后求相關(guān)函數(shù)最值.
解答 解:f′(x)=-x+2+$\frac{x}$,
由于f(x)在[1,+∞)上是減函數(shù),
所以f′(x)≤0在[1,+∞)上恒成立.
所以-x+2+$\frac{x}$≤0,
即b≤x(x-2),
令g(x)=x(x-2),x∈(1,+∞),
只需b≤g(x)min.
因?yàn)間(x)=(x-1)2-1在(1,+∞)單調(diào)遞增,
g(x)<g(1)=-1,
所以b≤-1,
b的取值范圍是(-∞,-1]
故選:C
點(diǎn)評(píng) 本題考查單調(diào)性與導(dǎo)數(shù)的關(guān)系,考查轉(zhuǎn)化計(jì)算能力,參數(shù)分離的方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 沒有最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,3) | C. | (-∞,1] | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | $\frac{11}{3}$π | D. | 3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | -4 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com