如圖,AB是⊙O的直徑,CB切⊙O于點B,CD切⊙O于點D,交BA的延長線于點E,若DE=
3
,∠ADE=30°,則△BDC的外接圓的直徑為
 
考點:與圓有關的比例線段
專題:計算題,立體幾何
分析:連接OD,OC,則OD⊥CE,求出OD=1,∠OCD=30°,利用OC為△BDC的外接圓的直徑,可得結論.
解答: 解:如圖所示,連接OD,OC,則OD⊥CE,
∵∠ADE=30°,CD切⊙O于點D,
∴∠ADB=30°,
∴∠DOA=60°,
∴∠CEB=30°,
∵DE=
3

∴OD=1,
∵CB切⊙O于點B,∠OCD=30°,
∴OC=2,
∴△BDC的外接圓的直徑為2.
故答案為:2.
點評:本題考查與圓有關的比例線段,考查圓的切線性質,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某公司招聘員工,現(xiàn)有兩位專家面試,若兩位專家都同意通過,則視作通過初審予以錄用;若這兩位專家都不同意通過,則視作初審不予錄用;當這兩位專家意見不一致時,再由第三位專家進行復審,若能通過復審則予以錄用,否則不予錄用,設應聘人員獲得每位初審專家通過的概率均為0.5,復審能通過的概率為0.3,各專家評審的結果相互獨立.
(1)求某應聘人員被錄用的概率;
(2)若4人應聘,設X為被錄用的人數(shù),試求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體的一個頂點上三條棱長分別是3、4、5,則其體對角線長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從長方體一個頂點出發(fā)的三個面的面積分別為6、8、12,則其體對角線長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足an+1+(-1)n•an=2n-1,則{an}的前40項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點F的一條直線與該雙曲線有且只有一個交點,且交點的橫坐標為2a,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f1(x)=cosx,定義fn+1(x)為fn(x)的導數(shù),即fn+1(x)=f′n(x)n∈N*,若△ABC的內角A滿足f1(A)+f2(A)+…+f2013(A)=
1
3
,則sin2A的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={2,3},B={1,2,3},從A,B中各取任意一個數(shù),則這兩個數(shù)之和等于5的概率為( 。
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
16
+
y2
12
=1的兩個焦點分別為F1、F2,P是橢圓上的一點,且|PF1|-|PF2|=2,則△PF1F2的形狀是( 。
A、直角三角形
B、鈍角三角形
C、銳角三角形
D、等邊三角形

查看答案和解析>>

同步練習冊答案