【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)

立體幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行研究,記抽取的兩人中答對的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)97.5%以上的把握認(rèn)為喜歡空間想象性別有關(guān);(2)分布列見解析,期望為.

【解析】試題分析:(1)根據(jù)公式求出,從而得到有的把握認(rèn)為視覺和空間能力與性別有關(guān);(2)由題意得的所有可能取值為,利用古典概型概率公式分別求出相應(yīng)的概率,由此能求出的分布列和.

試題解析:(1),

故有97.5%以上的把握認(rèn)為喜歡空間想象性別有關(guān);

2)由題知選做立體幾何題且答對的共24人,其中男生20人、女生4人,

的所有取值分別為0,12,分布列為

0

1

2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在某校組織的“共筑中國夢”競賽活動(dòng)中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如下圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時(shí)沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個(gè)班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求 的單調(diào)區(qū)間;

(2)若曲線 與直線只有一個(gè)交點(diǎn), 求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報(bào)是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實(shí)際經(jīng)驗(yàn),經(jīng)過分析推斷得到的,在現(xiàn)實(shí)的生產(chǎn)生活中有著重要的意義,某快餐企業(yè)的營銷部門對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨填上和降雨量的大小有關(guān).

(1)天氣預(yù)報(bào)所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設(shè)計(jì)模擬實(shí)驗(yàn)的方法研究三天中恰有兩天降雨的概率,利用計(jì)算機(jī)產(chǎn)生0大9之間取整數(shù)值的隨機(jī)數(shù),并用表示下雨,其余個(gè)數(shù)字表示不下雨,產(chǎn)生了20組隨機(jī)數(shù):

求由隨機(jī)模擬的方法得到的概率值;

(2)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計(jì)了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不在造成過多浪費(fèi),預(yù)測降雨量為6毫米時(shí)需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓的一組等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開始,按逆時(shí)針方向依次記錄個(gè)點(diǎn)的顏色,稱為該圓的一個(gè)階段序,當(dāng)且僅當(dāng)兩個(gè)階色序?qū)?yīng)位置上的顏色至少有一個(gè)不相同時(shí),稱為不同的階色序.若某圓的任意兩個(gè)階段序均不相同,則稱該圓為階魅力圓.3階魅力圓中最多可有的等分點(diǎn)個(gè)數(shù)為

A.4 B.6

C. 8 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,對任意實(shí)數(shù),都有.

(1)若, ,且,求, 的值;

(2)若為常數(shù),函數(shù)是奇函數(shù),

驗(yàn)證函數(shù)滿足題中的條件;

若函數(shù)求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+x2(a∈R)在x=﹣處取得極值.

(1)確定a的值;

(2)討論函數(shù)g(x)=f(x)ex的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M1,0),傾斜角為

)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;

)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于AB兩點(diǎn),求|MA|+|MB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知三棱柱中, , ,

(1)求證:

(2)若, ,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案