在等腰梯形ABCD中,E、F分別是CD、AB中點(diǎn),CD=2,AB=4,AD=BC=.沿EF將梯形AFED折起,使得∠AFB=60°,如圖.
(Ⅰ)若G為FB的中點(diǎn),求證:AG⊥平面BCEF;
(Ⅱ)求二面角C—AB—F的正切值.
(Ⅰ)因?yàn)锳F=BF,∠AFB=60°,△AFB為等邊三角形.
又G為FB的中點(diǎn),所以AG⊥FB. (2分)
在等腰梯形ABCD中,因?yàn)镋、F分別是CD、AB的中點(diǎn),
所以EF⊥AB.于是EF⊥AF,EF⊥BF,則EF⊥平面ABF,
所以AG⊥EF. (4分)
又EF與FB交于一點(diǎn)F,所以AG⊥平面BCEF. (5分)
(Ⅱ)解法一:連接CG,因?yàn)樵诘妊菪蜛BCD中,
CD=2,AB=4,E、F分別是CD、AB中點(diǎn),
所以EC=FG=BG=1,從而CG∥EF.
因?yàn)镋F⊥面ABF,所以CG⊥面ABF. (7分)
過點(diǎn)G作GH⊥AB于H,連結(jié)CH,據(jù)三垂線定理有CH⊥AB,所以∠CHG為二面角C—AB—F的平面角. (9分)
因?yàn)镽t△BHG中,BG=1,∠GBH=60°,所以GH=. (10分)
在Rt△CGB中,CG⊥BG,BG=1,BC=,所以CG=1. (11分)
在Rt△CGH中,tan∠CHG==,故二面角C—AB—F的正切值為. (12分)
解法二:如圖所示建立空間直角坐標(biāo)系,由已知可得,
點(diǎn)B(2,0,0),A(1,0,),C(1,1,0). (7分)
因?yàn)镋F⊥平面ABF,所以=(0,1,0)為
平面ABF的一個(gè)法向量. (8分)
設(shè)=(x,y,z)為平面ABCD的法向量,
因?yàn)?sub>,,
由,,得
, 即.
令,則,z=1,所以=(,,1). (10分)
所以cos<,>==. (11分)
從而tan<,>=,故二面角C—AB—F的正切值為. (12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
A、隨著角度θ的增大,e1增大,e1e2為定值 |
B、隨著角度θ的增大,e1減小,e1e2為定值 |
C、隨著角度θ的增大,e1增大,e1e2也增大 |
D、隨著角度θ的增大,e1減小,e1e2也減小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AN |
C1N |
B1C1 |
AN |
B1C1 |
AC1 |
B1C1 |
AM |
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com