【題目】將函數(shù)f(x)=sinωx(其中ω>0)的圖象向右平移 個(gè)單位長(zhǎng)度,所得圖象經(jīng)過(guò)點(diǎn)( ,0),則ω的最小值是

【答案】2
【解析】解:將函數(shù)y=sinωx(其中ω>0)的圖象向右平移 個(gè)單位長(zhǎng)度, 所得圖象對(duì)應(yīng)的函數(shù)為y=sinω(x﹣ ).
再由所得圖象經(jīng)過(guò)點(diǎn)( ,0),可得sinω( )=sin ω=0,
ω=kπ,k∈z.
故ω的最小值是2.
所以答案是:2.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F為拋物線C:y2=4x的焦點(diǎn),點(diǎn)P是準(zhǔn)線l上的動(dòng)點(diǎn),直線PF交拋物線C于A,B兩點(diǎn),若點(diǎn)P的縱坐標(biāo)為m(m≠0),點(diǎn)D為準(zhǔn)線l與x軸的交點(diǎn). (Ⅰ)求直線PF的方程;
(Ⅱ)求△DAB的面積S范圍;
(Ⅲ)設(shè) , ,求證λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)=x3﹣ax2+1在(1,3)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的范圍是(
A.[ ,+∞)
B.(﹣∞,3]
C.(3,
D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為大力提倡“厲行節(jié)約,反對(duì)浪費(fèi)”,某市通過(guò)隨機(jī)詢問(wèn)100名性別不同的居民是否做到“光盤”行動(dòng),得到如下列聯(lián)表及附表: 經(jīng)計(jì)算:

做不到“光盤”行動(dòng)

做到“光盤”行動(dòng)

45

10

30

15

P(X2≥x0

0.10

0.05

0.025

x0

2.706

3.841

5.024

參照附表,得到的正確結(jié)論是(
A.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別無(wú)關(guān)”
C.有90%以上的把握認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量 (件)與單價(jià) (元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.

(1)根據(jù)周銷售量圖寫出 (件)與單價(jià) (元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(rùn) (元)與單價(jià) (元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程|x2﹣2x﹣1|﹣t=0有四個(gè)不同的實(shí)數(shù)根x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則2(x4﹣x1)+(x3﹣x2)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對(duì)稱軸之間的距離等于 ,求函數(shù)f(x)的解析式;并求最小正實(shí)數(shù)m,使得函數(shù)f(x)的圖象象左平移m個(gè)單位所對(duì)應(yīng)的函數(shù)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著醫(yī)院對(duì)看病掛號(hào)的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門的就診方式,這解決了看病期間病人插隊(duì)以及醫(yī)生先治療熟悉病人等諸多問(wèn)題;某醫(yī)院研究人員對(duì)其所在地區(qū)年齡在10~60歲間的n位市民對(duì)網(wǎng)上預(yù)約掛號(hào)的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如右圖所示.
(1)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(2)若按分層抽樣的方法從年齡在[20,30)以內(nèi)及[40,50)以內(nèi)的市民中隨機(jī)抽取10人,再?gòu)倪@10人中隨機(jī)抽取3人進(jìn)行調(diào)研,記隨機(jī)抽的3人中,年齡在[40,50)以內(nèi)的人數(shù)為X,求X的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,三個(gè)內(nèi)角A,B,C依次成等差數(shù)列,若sin2B=sinAsinC,則△ABC形狀是(
A.銳角三角形
B.等邊三角形
C.直角三角形
D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案