11.為了加強環(huán)保建設,提高社會效益和經濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車.每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動力型車.今年初投入了電力型公交車120輛,混合動力型公交車300輛,計劃以后電力型車每年的投入量比上一年增加50%,混合動力型車每年比上一年多投入m輛.設an,bn分別為第n年投入的電力型公交車,混合動力型公交車的數(shù)量,設Sn,Tn分別為n年里投入的電力型公交車,混合動力型公交車的總數(shù)量.
(1)求Sn,Tn,并求n年里投入的所有新公交車的總數(shù)Fn;
(2)該市計劃用8年的時間完成全部更換,求m的最小值.

分析 (1)由題意可得:數(shù)列{an}為等比數(shù)列,首項為120,公比為$\frac{3}{2}$;數(shù)列{bn}為等差數(shù)列,首項為300,公差為m.利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出;
(2)F8=$240[(\frac{3}{2})^{8}-1]$+300×8+$\frac{8×7}{2}$m≥10000,解出即可.

解答 解:(1)由題意可得:數(shù)列{an}為等比數(shù)列,首項為120,公比為$\frac{3}{2}$;數(shù)列{bn}為等差數(shù)列,首項為300,公差為m.
∴Sn=$\frac{120[(\frac{3}{2})^{n}-1]}{\frac{3}{2}-1}$=$240[(\frac{3}{2})^{n}-1]$,Tn=300n+$\frac{n(n-1)}{2}•m$,
∴Fn=Sn+Tn=$240[(\frac{3}{2})^{n}-1]$+300n+$\frac{n(n-1)}{2}•m$.
(2)F8=$240[(\frac{3}{2})^{8}-1]$+300×8+$\frac{8×7}{2}$m≥10000,
解得m≥59.65,
因此m的最小值為60.
答:(1)Sn=$240[(\frac{3}{2})^{n}-1]$,Tn=300n+$\frac{n(n-1)}{2}•m$,F(xiàn)n=Sn+Tn=$240[(\frac{3}{2})^{n}-1]$+300n+$\frac{n(n-1)}{2}•m$.
(2)該市計劃用8年的時間完成全部更換,m的最小值為60.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知集合A={x|x2+ax+l=0),B={x|x2+2x-a+3=0},且A=B,則實數(shù)a的取值范圍是-2<a≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設Sn是等差數(shù)列的前n項和,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,則$\frac{{S}_{6}}{{S}_{9}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請說明理由.
(3)若數(shù)列{bn},對于任意的正整數(shù)n,均有${b_1}{a_n}+{b_2}{a_{n-1}}+{b_3}{a_{n-2}}+…+{b_n}{a_1}={({\frac{1}{2}})^n}-\frac{n+2}{2}$成立,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列{an}的通項an=$\frac{2n-\sqrt{2015}}{2n-\sqrt{2016}}$,則該數(shù)列中最大項是第23項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知m,n為兩條不同的直線,α,β為兩個不同的平面,給出下列四個命題:
①若m?α,n∥α,則m∥n.
②若m⊥α,n∥α,則m⊥n.
③若m⊥α,m⊥β,則α∥β.
④若m∥α,n∥α,則m∥n.
其中正確的命題序號是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,側面PBC⊥底面ABCD,點M在AB上,且AM:MB=1:2,E為PB的中點.
(1)求證:CE∥平面ADP;
(2)求證:平面PAD⊥平面PAB;
(3)棱AP上是否存在一點N,使得平面DMN⊥平面ABCD,若存在,求出$\frac{AN}{NP}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=3sinωx(ω>0)在區(qū)間[-$\frac{π}{5}$,-$\frac{π}{3}$]上的最小值是-3,則ω的最小值等于( 。
A.$\frac{9}{2}$B.$\frac{3}{2}$C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求下列函數(shù)的定義域和值域.
(1)y=f(x)=log3(x2-3x-4);
(2)y=log3(x2+4x+7).

查看答案和解析>>

同步練習冊答案