已知橢圓的離心率為,其左、右焦點分別為,點是橢圓上一點,且,(為坐標原點).

(Ⅰ)求橢圓的方程;

 (Ⅱ)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過這個點?若存在,求出的坐標,若不存在,說明理由.

 

【答案】

(1)(2)見解析.

【解析】(1)由,又,.根據(jù)直角三角形的性質得,從而得.(2)寫出動直線的方程為:與橢圓的方程為:  聯(lián)立消去,由韋達定理求出設定點M(0,m),根據(jù)恒成立.求得m=1.

解:(Ⅰ)因為,所以.   ………………2分

,∴,∴;

又∵,∴,

.b=1. 因此所求橢圓的方程為:     ………4分

 (Ⅱ)動直線的方程為:

 …………………………………8分

假設在y軸上存在定點M(0,m),滿足題設,則

          ………………………………12分

由假設得對于任意的恒成立,

 解得m=1.

因此,在y軸上存在定點M,使得以AB為直徑的圓恒過這個點,

M的坐標為(0,1).………………………………………………………14分,.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構成的“眼形”結構中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案