5.已知函數(shù)$g(x)=\frac{1}{3}{x^3}+x-m+\frac{m}{x}(m>0)$是[1,∞]上的增函數(shù).當(dāng)實(shí)數(shù)m取最大值時(shí),若存在點(diǎn)Q,使得過Q的直線與曲線y=g(x)圍成兩個(gè)封閉圖形,且這兩個(gè)封閉圖形的面積總相等,則點(diǎn)Q的坐標(biāo)為(  )
A.(0,-3)B.(0,3)C.(0,-2)D.(0,2)

分析 求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出m的最大值,結(jié)合過點(diǎn)Q的直線與曲線y=g(x)圍成兩個(gè)封閉圖形,且這兩個(gè)封閉圖形的面積總相等,判斷函數(shù)的對稱性進(jìn)行求解即可.

解答 解:由$g(x)=\frac{1}{3}{x^3}+x-m+\frac{m}{x}(m>0)$得g′(x)=x2+1-$\frac{m}{{x}^{2}}$.
∵g(x)是[1,+∞)上的增函數(shù),∴g′(x)≥0在[1,+∞)上恒成立,即x2+1-$\frac{m}{{x}^{2}}$≥0在[1,+∞)上恒成立.
設(shè)x2=t,∵x∈[1,+∞),∴t∈[1,+∞),即不等式t+1-$\frac{m}{t}$≥0在[1,+∞)上恒成立.
設(shè)y=t+1-$\frac{m}{t}$,t∈[1,+∞),
∵y′=1+$\frac{m}{{t}^{2}}$>0,
∴函數(shù)y=t+1-$\frac{m}{t}$在[1,+∞)上單調(diào)遞增,因此ymin=2-m.
∵ymin≥0,∴2-m≥0,即m≤2.又m>0,故0<m≤2.m的最大值為2.
故得g(x)=$\frac{1}{3}$x3+x-2+$\frac{2}{x}$,x∈(-∞,0)∪(0,+∞).
將函數(shù)g(x)的圖象向上平移2個(gè)長度單位,所得圖象相應(yīng)的函數(shù)解析式為φ(x)=$\frac{1}{3}$x3+2x+$\frac{2}{x}$,x∈(-∞,0)∪(0,+∞).
由于φ(-x)=-φ(x),
∴φ(x)為奇函數(shù),
故φ(x)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱.
由此即得函數(shù)g(x)的圖象關(guān)于點(diǎn)Q(0,-2)成中心對稱.
這表明存在點(diǎn)Q(0,-2),使得過點(diǎn)Q的直線若能與函數(shù)g(x)的圖象圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等.
故選:C.

點(diǎn)評 本題主要考查函數(shù)性質(zhì)的考查,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,結(jié)合函數(shù)的對稱性是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn)分別為A1,A2,且|A1A2|=4$\sqrt{3}$,該橢圓的離心率為$\frac{{\sqrt{6}}}{3}$,以M(-3,2)為圓心,r為半徑的圓與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)若A,B兩點(diǎn)關(guān)于原點(diǎn)對稱,求圓M的方程;
(3)若點(diǎn)A的坐標(biāo)為(0,2),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知A={x|x2+5x-6=0},B={x|mx+1=0},且A∩B=B,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)全集U={x||x|<4,且x∈Z},S={-2,1,3},若∁UP⊆S,則這樣的集合P共有( 。
A.5個(gè)B.6個(gè)C.7個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求a的值;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過雙曲線$\frac{x^2}{16}-\frac{y^2}{12}=1$左焦點(diǎn)F1的直線交雙曲線的左支于M,N兩點(diǎn),F(xiàn)2為其右焦點(diǎn),則|MF2|+|NF2|-|MN|的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)的定義域是[-1,2],則函數(shù)g(x)=f($\frac{x}{2}$)-f(4-x)的定義域是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求值:
(1)若x>0,求(2x${\;}^{\frac{1}{4}}$+3${\;}^{\frac{3}{2}}$)(2x${\;}^{\frac{1}{4}}$-3${\;}^{\frac{3}{2}}$)-4x${\;}^{-\frac{1}{2}}$(x-x${\;}^{\frac{1}{2}}$)
(2)lg5(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.06.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=f(x-1)的定義域?yàn)閇-2,3),值域是[-1,2),則f(x+2)的值域是[-1,2),f(log2x)的定義域是[$\frac{1}{8},4$).

查看答案和解析>>

同步練習(xí)冊答案