分析 要求的不等式等價(jià)于-2≤(x+1)2≤2,等價(jià)于(x+1)2≤2,等價(jià)于-$\sqrt{2}$≤x+1≤$\sqrt{2}$,由此求得x的范圍.
解答 解:不等式|x2+2x+1|≤2等價(jià)于-2≤(x+1)2≤2,等價(jià)于(x+1)2≤2,等價(jià)于-$\sqrt{2}$≤x+1≤$\sqrt{2}$,
求得-1-$\sqrt{2}$≤x≤$\sqrt{2}$-1,
故答案為:{x|-1-$\sqrt{2}$≤x≤$\sqrt{2}$-1}.
點(diǎn)評 本題主要考查絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+$\sqrt{2}$x<-1 | B. | x2+$\sqrt{x}$+1<0 | C. | x2+$\frac{3}{x}$+1<0 | D. | x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com