下表是某單位在2013年1-5月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x12345
用水量y4.5432.51.8
(Ⅰ)若由線性回歸方程得到的預(yù)測(cè)數(shù)據(jù)與實(shí)際檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.05,視為“預(yù)測(cè)可靠”,通過(guò)公式得
?
b
=-0.7
,那么由該單位前4個(gè)月的數(shù)據(jù)中所得到的線性回歸方程預(yù)測(cè)5月份的用水量是否可靠?說(shuō)明理由;
(Ⅱ)從這5個(gè)月中任取2個(gè)月的用水量,求所取2個(gè)月的用水量之和小于7(單位:百噸)的概率.
參考公式:回歸直線方程是:
?
a
=
.
y
-
?
b
.
x
,
?
y
=
?
b
x+
?
a
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)求出線性回歸方程,可得x=5時(shí),估計(jì)值
?
y
=-0.7×5+5.25=1.75
,而|1.75-1.8|=0.05≤0.05,即可得出結(jié)論;
(Ⅱ)利用列舉法確定基本事件的個(gè)數(shù),利用古典概型的概率公式,即可得出結(jié)論.
解答: 解:(Ⅰ)由數(shù)據(jù),得
.
x
=2.5,
.
y
=3.5
,且
?
b
=-0.7
?
a
=
.
y
-
?
b
.
x
=5.25
,所以y關(guān)于x的線性回歸方程為
?
y
=-0.7x+5.25

當(dāng)x=5時(shí),得估計(jì)值
?
y
=-0.7×5+5.25=1.75
,而|1.75-1.8|=0.05≤0.05;
所以,所得到的回歸方程是“預(yù)測(cè)可靠”的…(6分)
(Ⅱ)從這5個(gè)月中任取2個(gè)用,包含的基本事件有以下10個(gè):(4.5,4),(4.5,3),(4.5,2,5),(4.5,1.8),(4,3),(4,2.5),(4,1.8),(3,2.5),(3,1.8),(2.5,1.8),
其中所取2個(gè)月的用水量之和小于7(百噸)的基本事件有以下6個(gè):(4.5,1.8),(4,2.5),(4,1.8),(3,2.5),(3,1.8),(2.5,1.8),
故所求概率P=
6
10
=
3
5
…(12分)
點(diǎn)評(píng):本題考查線性回歸方程,考查古典概型的概率公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A為圓A:(x-1)2+y2=25的圓心,平面上點(diǎn)P滿足PA=
3
,那么點(diǎn)P與圓A的位置關(guān)系是( 。
A、點(diǎn)P在圓A上
B、點(diǎn)P在圓A內(nèi)
C、點(diǎn)P在圓A外
D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為2的正方形ABCD中有一內(nèi)切圓,某人為了用隨機(jī)模擬的方法估計(jì)出該圓內(nèi)陰影部分(旗幟)的面積S0,往正方形ABCD內(nèi)隨機(jī)撒了100粒品質(zhì)相同 的豆子,結(jié)果有75粒落在圓內(nèi),有25粒落在陰影部分內(nèi),據(jù)此,有五種說(shuō)法:
①估計(jì)S0=1;   
②估計(jì)S0=
π
2
;
③估計(jì)S0=
π
3
;  
④估計(jì)S0=
π
4

⑤估計(jì)S0=
4
3

那么以上說(shuō)法中不正確的是
 
(填上所有不正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
4-x2
,x∈[-2,0)
2-x,x∈[0,2]
則將y=f(x)的曲線繞x軸旋轉(zhuǎn)一周所得幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1:y=x+a和l2:y=x+b將單位圓C:x2+y2=1分成長(zhǎng)度相等的四段弧,則a2+b2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
y≤2
x+y≥1
x-y≤1
,則z=3x-y的最大值為( 。
A、11B、7C、3D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小組共有n(n>2,n∈N)名學(xué)生,其中恰有一對(duì)雙胞胎,若從中隨機(jī)抽查4位學(xué)生的作業(yè),若雙胞胎的作業(yè)同時(shí)被抽中概率為
2
15
,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若冪函數(shù)y=xα在 (0,+∞)上是增函數(shù),則α一定(  )
A、α>0B、α<0
C、α>1D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,
m
=(b,2a-c),
n
=(2cos2
B
2
-1,cosC),且
m
n

(1)求角B的大小;
(2)設(shè)f(x)=cos(ωx-
B
2
)+sinωx,(ω>0),且f(x)的相鄰兩條對(duì)稱軸之間的距離為
π
2
,求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案