設(shè)函數(shù),若
(1)求函數(shù)的解析式;
(2)畫(huà)出函數(shù)的圖象,并說(shuō)出函數(shù)的單調(diào)區(qū)間;
(3)若,求相應(yīng)的值.
(1) ;(2)增區(qū)間為,減區(qū)間為、;
(3)或x=-2。
【解析】
試題分析:解本小題關(guān)鍵是根據(jù)建立b,c的方程,從而解出b,c的值,確定f(x)的解析式,對(duì)于分段函數(shù)要注意分段求其單調(diào)區(qū)間.分段畫(huà)出其圖像.
(1),解得
------------------------------4
(2)圖象略,--------------------------------------------------6
由圖象可知單調(diào)區(qū)間為:
,,,其中增區(qū)間為,
減區(qū)間為、--------------------------------------8
(3)或x=-2----------------------------------------------------------------------12考點(diǎn):本小題考查了函數(shù)的圖像及單調(diào)性以及解方程等知識(shí).
點(diǎn)評(píng):分段函數(shù)在求解單調(diào)區(qū)間及最值時(shí),要注意分段求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于 [1,2], [0,1],使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南汝城第一中學(xué)、長(zhǎng)沙實(shí)驗(yàn)中學(xué)高三11月聯(lián)考文數(shù)學(xué)卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],
[0,1],使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省廣州市海珠區(qū)高三入學(xué)摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],[0,1],使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年甘肅省高一上學(xué)期期中考試數(shù)學(xué) 題型:選擇題
設(shè)函數(shù),若>1,則a的取值范圍是( )
A.(-1,1) B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com