分析 (Ⅰ)確定共23=8,中情形,得出其中只有2次中的情形,(1,1,0),(1,0,1)(0,1,1)3種,根據概率公式求解即可.
(Ⅱ)根據題意得出隨機變量的值:X得分共有6種情形,X=0,2,3,4,5,7,
利用給出的數據得出相應的概率,列出分布列,求解數學期望即可.
解答 解:(Ⅰ)總共有3次投籃,每次投不中記0,共23=8,中情形,其中只有2次中的情形,
(1,1,0),(1,0,1)(0,1,1)3種,
其發(fā)生的概率為P=$\frac{4}{5}$$•\frac{4}{5}$•(1-$\frac{2}{3}$)$+\frac{4}{5}$×$\frac{1}{5}$×$\frac{2}{3}$+$\frac{1}{5}$×$\frac{4}{5}$×$\frac{2}{3}$=$\frac{32}{75}$;
(Ⅱ)得分共有6種情形,X=0,2,3,4,5,7,
得分X=0,的情形(0,0,0),P=$\frac{1}{5}$×$\frac{1}{5}$×$\frac{1}{3}$=$\frac{1}{75}$,
得分X=2,的情形(1,0,0),(0,1,0),P=2×$\frac{4}{5}$×$\frac{1}{5}$×$\frac{1}{3}$=$\frac{8}{75}$,
得分X=3,的情形(0,0,1),P=$\frac{1}{5}$×$\frac{1}{5}$××$\frac{2}{3}$=$\frac{2}{75}$,
得分X=4,的情形(1,1,0),P=$\frac{4}{5}$×$\frac{4}{5}$×$\frac{1}{3}$=$\frac{16}{75}$,
得分X=5,的情形(1,0,1),(0,1,1),P=2×$\frac{1}{5}$×$\frac{4}{5}$×$\frac{2}{3}$=$\frac{16}{75}$,
得分X=7,的情形(1,1,1),P=$\frac{4}{5}$×$\frac{4}{5}$×$\frac{2}{3}$=$\frac{32}{75}$,
∴X的分布列為:
X | 0 | 2 | 3 | 4 | 5 | 7 |
P | $\frac{1}{75}$ | $\frac{8}{75}$ | $\frac{2}{75}$ | $\frac{16}{75}$ | $\frac{16}{75}$ | $\frac{32}{75}$ |
點評 本題考查了離散型的概率分布,數學期望的求解,注意分清隨機變量的取值,準確求解相應的概率的數值,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -3 | B. | $-\sqrt{3}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1-$\frac{2}{π}$ | B. | $\frac{2}{π}$ | C. | 1-$\frac{π}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com