【題目】已知橢圓 的左、右焦點(diǎn)分別為、, 為橢圓的右頂點(diǎn), , 分別為橢圓的上、下頂點(diǎn).線段的延長(zhǎng)線與線段交于點(diǎn),與橢圓交于點(diǎn).(1)若橢圓的離心率為, 的面積為12,求橢圓的方程;(2)設(shè) ,求實(shí)數(shù)的最小值.

【答案】(1) (2)

【解析】試題分析:(1)由橢圓的離心率為,得是等腰直角三角形,再由勾股定理及橢圓定義得, ,因此,解得, .(2)因?yàn)?/span>,所以,即,再由直線的方程與直線的方程求出交點(diǎn),可得P點(diǎn)坐標(biāo): , ,最后代入橢圓方程化簡(jiǎn)得,轉(zhuǎn)化為離心率 ,利用基本不等式求最小值.

試題解析:解:(1)是等腰直角三角形,由勾股定理知,

解得,

, , ,

,即, .

所以橢圓的方程為.

(2)設(shè),因?yàn)橹本的方程為,直線的方程為

所以聯(lián)立方程解得.

因?yàn)?/span>,所以,所以,

所以,所以, ,

代入橢圓的方程,得,

,

所以 ,

因?yàn)?/span>所以,所以當(dāng)且僅當(dāng)時(shí),

取到最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABC-A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1CAC1

(Ⅰ)求證:平面AA1B1BBB1C1C;

(Ⅱ)若DCC1中點(diǎn),ADB是二面角A-CC1-B的平面角,求直線AC1與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).

(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點(diǎn),

1)證明:平面平面;

2)若與平面所成角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,對(duì)應(yīng)關(guān)系f是從A到B的映射的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y滿足f(x)+f(y)=f(x+y)+3,f(3)=6,當(dāng)x>0 時(shí),f(x)>3,那么,當(dāng)f(2a+1)<5時(shí),實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c的圖像如圖,直線y=0在原點(diǎn)處與函數(shù)圖像相切,且此切線與函數(shù)圖像所圍成的區(qū)域(陰影)面積為
(1)求f(x)的解析式
(2)若常數(shù)m>0,求函數(shù)f(x)在區(qū)間[﹣m,m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個(gè)數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為(
A.(0,1)
B.[0,
C.(0, ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在5次英語口語測(cè)試中的成績(jī)統(tǒng)計(jì)如圖的莖葉圖所示.

(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語口語競(jìng)賽,從兩同學(xué)的平均成績(jī)和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對(duì)學(xué)生甲在今后的三次英語口語競(jìng)賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案